Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Polyploid cells and organisms are those containing more than two paired (homologous) sets of chromosomes. Most species whose cells have nuclei (Eukaryotes) are diploid, meaning they have two sets of chromosomes—one set inherited from each parent. However, polyploidy is found in some organisms and is especially common in plants. In addition, polyploidy occurs in some tissues of animals that are otherwise diploid, such as human muscle tissues. This is known as endopolyploidy. Species whose cells do not have nuclei, that is, Prokaryotes, may be polyploid organisms, as seen in the large bacterium "Epulopiscium fishelsoni" . Hence ploidy is defined with respect to a cell. Most eukaryotes have diploid somatic cells, but produce haploid gametes (eggs and sperm) by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid. Male bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis, the sporophyte generation is diploid and produces spores by meiosis.
Polyploidy refers to a numerical change in a whole set of chromosomes. Organisms in which a particular chromosome, or chromosome segment, is under- or overrepresented are said to be aneuploid (from the Greek words meaning "not", "good", and "fold"). Therefore, the distinction between aneuploidy and polyploidy is that aneuploidy refers to a numerical change in part of the chromosome set, whereas polyploidy refers to a numerical change in the whole set of chromosomes.
Polyploidy may occur due to abnormal cell division, either during mitosis, or commonly during metaphase I in meiosis. In addition, it can be induced in plants and cell cultures by some chemicals: the best known is colchicine, which can result in chromosome doubling, though its use may have other less obvious consequences as well. Oryzalin will also double the existing chromosome content.
Polyploidy occurs in highly differentiated human tissues in the liver, heart muscle and bone marrow. It occurs in the somatic cells of some animals, such as goldfish, salmon, and salamanders, but is especially common among ferns and flowering plants (see "Hibiscus rosa-sinensis"), including both wild and cultivated species. Wheat, for example, after millennia of hybridization and modification by humans, has strains that are diploid (two sets of chromosomes), tetraploid (four sets of chromosomes) with the common name of durum or macaroni wheat, and hexaploid (six sets of chromosomes) with the common name of bread wheat. Many agriculturally important plants of the genus "Brassica" are also tetraploids.
Polyploidization is a mechanism of sympatric speciation because polyploids are usually unable to interbreed with their diploid ancestors. An example is the plant "Erythranthe peregrina". Sequencing confirmed that this species originated from "E. x robertsii", a sterile triploid hybrid between "E. guttata" and "E. lutea," both of which have been introduced and naturalised in the United Kingdom. New populations of "E. peregrina" arose on the Scottish mainland and the Orkney Islands via genome duplication from local populations of "E. x robertsii". Because of a rare genetic mutation, "E. peregrina" is not sterile.
Polyploid types are labeled according to the number of chromosome sets in the nucleus. The letter "x" is used to represent the number of chromosomes in a single set.
- triploid (three sets; 3"x"), for example seedless watermelons, common in the phylum Tardigrada
- tetraploid (four sets; 4"x"), for example Salmonidae fish, the cotton "Gossypium hirsutum "
- pentaploid (five sets; 5"x"), for example Kenai Birch ("Betula papyrifera" var. "kenaica")
- hexaploid (six sets; 6"x"), for example wheat, kiwifruit
- heptaploid or septaploid (seven sets; 7"x")
- octaploid or octoploid, (eight sets; 8"x"), for example "Acipenser" (genus of sturgeon fish), dahlias
- decaploid (ten sets; 10"x"), for example certain strawberries
- dodecaploid (twelve sets; 12"x"), for example the plants "Celosia argentea" and "Spartina anglica" or the amphibian "Xenopus ruwenzoriensis".
Paleopolyploidy is the result of genome duplications which occurred at least several million years ago (MYA). Such an event could either double the genome of a single species (autopolyploidy) or combine those of two species (allopolyploidy). Because of functional redundancy, genes are rapidly silenced or lost from the duplicated genomes. Most paleopolyploids, through evolutionary time, have lost their polyploid status through a process called diploidization, and are currently considered diploids e.g. baker's yeast, "Arabidopsis thaliana", and perhaps humans.
Paleopolyploidy is extensively studied in plant lineages. It has been found that almost all flowering plants have undergone at least one round of genome duplication at some point during their evolutionary history. Ancient genome duplications are also found in the early ancestor of vertebrates (which includes the human lineage) and another near the origin of the bony fishes. Evidence suggests that baker's yeast ("Saccharomyces cerevisiae"), which has a compact genome, experienced polyploidization during its evolutionary history.
The term "mesopolyploid" is sometimes used for species that have undergone whole genome multiplication events (whole genome duplication, whole genome triplification, etc.) in more recent history, such as within the last 17 million years.
Currently, fungicides and other chemical and biological control agents have proven fairly unsuccessful, or only successful in vitro or in greenhouses, in the face of Panama disease of bananas. The most commonly used practices include mostly sanitation and quarantine practices to prevent the spread of Panama disease out of infected fields. However, the most effective tool against Panama disease is the development of banana trees resistant to "Fusarium oxysporum f. sp. Cubense". Unfortunately, the clonal reproduction of banana has led to a consequential lack of other varieties. Efforts are being made to produce resistant varieties, but with bananas being triploids which do not produce seeds, this is not an easy task. Creating clones from tissue cultures, rather than suckers, has proven somewhat successful in breeding resistant varieties, however these tend to have decreased success in stress-tolerance, yield, or other beneficial traits necessary for commercial varieties. Nevertheless, these efforts are leading to the best control measure for Panama disease of banana.
Recently, an R gene (RGA2) was transformed into Cavendish bananas which confers disease resistance to Fusarium wilt tropical race 4. This is the first case of successful resistance in the field and is a promising step towards preventing the loss of the Cavendish cultivars that are a huge portion of banana export production and subsistence of many communities.
In Queensland, a farm in Tully, 1500 km north of Brisbane, was quarantined and some plants were destroyed after TR4 was detected on March 3, 2015. After an initial shutdown of the infected farm, truckloads of fruit left in April with harvesting allowed to resume under strict biosecurity arrangements. The government says it is not feasible to eradicate the fungus. Researchers like Wageningen’s Kema say the disease will continue to spread, despite efforts to contain it, as long as susceptible varieties are being grown. The disease was again detected in Tully in July 2017, prompting Biosecurity Queensland to impose quarantine conditions.
The hypothesis of vertebrate paleopolyploidy originated as early as the 1970s, proposed by the biologist Susumu Ohno. He reasoned that the vertebrate genome could not achieve its complexity without large scale whole-genome duplications. The "two rounds of genome duplication" hypothesis (2R hypothesis) came about, and gained in popularity, especially among developmental biologists.
Some researchers have questioned the 2R hypothesis because it predicts that vertebrate genomes should have a 4:1 gene ratio compared with invertebrate genomes, and this is not supported by findings from the 48 vertebrate genome projects available in mid-2011. For example, the human genome consists of ~21,000 protein coding genes according to June, 2011 counts at UCSC and Ensembl genome analysis centers while an average invertebrate genome size is about 15,000 genes. The amphioxus genome sequence provided support for the hypothesis of two rounds of whole genome duplication, followed by loss of duplicate copies of most genes. Additional arguments against 2R were based on the lack of the (AB)(CD) tree topology amongst four members of a gene family in vertebrates. However, if the two genome duplications occurred close together, we would not expect to find this topology. A recent study generated the sea lamprey genetic map, which yielded strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, preceded and followed by several evolutionarily independent segmental duplications that occurred over chordate evolution.
Confined placental mosaicism (CPM) represents a discrepancy between the chromosomal makeup of the cells in the placenta and the cells in the baby. CPM was first described by Kalousek and Dill in 1983. CPM is diagnosed when some trisomic cells are detected on chorionic villus sampling and only normal cells are found on a subsequent prenatal test, such as amniocentesis or fetal blood sampling. In theory, CPM is when the trisomic cells are found only in the placenta. CPM is detected in approximately 1-2% of ongoing pregnancies that are studied by chorionic villus sampling (CVS) at 10 to 12 weeks of pregnancy. Chorionic villus sampling is a prenatal procedure which involves a placental biopsy. Most commonly when CPM is found it represents a trisomic cell line in the placenta and a normal diploid chromosome complement in the baby. However, the fetus is involved in about 10% of cases.
Most pregnancies that are diagnosed with confined placental mosaicism continue to term with no complications and the children develop normally.
However, some pregnancies with CPM experience prenatal or perinatal complications. The pregnancy loss rate in pregnancies with confined placental mosaicism, diagnosed by chorionic villus sampling, is higher than among pregnancies without placental mosaicism. It may be that sometimes the presence of significant numbers of abnormal cells in the placenta interferes with proper placental function. An impaired placenta cannot support the pregnancy and this may lead to the loss of a chromosomally normal baby. On the other hand, an apparently normal diploid fetus may experience problems with growth or development due to the effects of uniparental disomy (UPD). Intrauterine growth restriction (IUGR) has been reported in a number of CPM cases. In follow-up studies adequate postnatal catch-up growth has been demonstrated, which may suggest a placental cause of the IUGR.
When predicting the likely effects (if any) of CPM detected in the first trimester, several potentially interactive factors may be playing a role, including:
- "Origin of error:" Somatic errors are associated with lower levels of trisomy in the placenta and are expected usually to involve only one cell line (i.e.: the trophoblast cells or the villus stroma cells). Somatic errors are thus less likely than meiotic errors to be associated with either ultrasound abnormalities, growth problems or detectable levels of trisomy in small samples of prenatal CVS. Currently, there is no evidence that somatic errors, which lead to confined placental trisomy, are of any clinical consequence. Errors of meiotic origin are correlated with higher levels of trisomy in placental tissues and may be associated with adverse pregnancy outcome. The cell type in which the abnormality is seen is also an important factor in determining the risk of fetal involvement. The villus stroma or mesenchymal core is more likely than the cytotrophoblast to be reflective of the fetal genotype.
- "Level of mosaicism:" There is a correlation between a high number of aneuploid cells detected at CVS with poor pregnancy progress. This includes an association between high levels of abnormal cells in placental tissue and concerns with the growth of the baby. However, it is not accurate to use these associations to try to predict pregnancy outcome based on the percent of trisomic cells in a first trimester CVS result.
- "Specific chromosomes:" The influence of CPM on fetal growth is chromosome specific. Certain chromosomes carry imprinted genes involved in growth or placental function, which may contribute to impaired pregnancy progress when CPM is detected. Different chromosomes are observed at different frequencies depending on the type of CPM observed. The pregnancy outcome is strongly chromosome specific. The most frequently seen trisomic cells in confined placental mosaicism involve chromosomes 2, 3, 7, 8 and 16. The next frequently involved are 9, 13, 15, 18, 20 and 22. It has been observed that CPM involving the sex chromosomes usually has no adverse effects on fetal development. The common autosomal trisomies (21, 18, 13) made up a smaller number of cases of mosaicism detected on CVS, but were more often confirmed in fetal tissue (19%). On the other hand, the uncommon autosomal trisomies accounted for a greater number of placental mosaicism cases, but were less often confirmed in fetal tissue (3.2%). When CPM is detected on CVS involving certain chromosomes which are known or suspected to carry imprinted genes, molecular investigations should be performed to exclude fetal UPD. We will explore chromosome specific cases in the chromosome specific section.
- "Type of chromosome abnormality:" The factor that had the highest predictive value as to whether the fetus was affected or not was the type of chromosome abnormality. Marker chromosomes were more often confirmed in the fetus than trisomies. For example, of 28 cases of mosaic polyploidy detected on CVS, fetal mosaicism was confirmed in only one case. This is compared to marker chromosomes detected on CVS, in which mosaicism was confirmed in 1/4 of the fetuses.
Synostosis (plural: synostoses) is fusion of two bones. It can be normal in puberty, fusion of the epiphysis, or abnormal. When synostosis is abnormal it is a type of dysostosis.
Examples of synostoses include:
- craniosynostosis – an abnormal fusion of two or more cranial bones;
- radioulnar synostosis – the abnormal fusion of the radius and ulna bones of the forearm;
- tarsal coalition – a failure to separately form all seven bones of the tarsus (the hind part of the foot) resulting in an amalgamation of two bones; and
- syndactyly – the abnormal fusion of neighboring digits.
Synostosis within joints can cause ankylosis.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.