Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because of its extreme rarity, there have been no controlled clinical trials of treatment regimens for FA and, as a result, there are no evidence-based treatment guidelines. Complete surgical resection is the treatment of choice in FA, as it is in nearly all forms of lung cancer.
Anecdotal reports suggest that FA is rarely highly sensitive to cytotoxic drugs or radiation. Case reports suggest that chemotherapy with UFT may be useful in FA.
Treating PPB depends on the size and location of the tumor, whether the cancer has spread, and the child's overall health. Surgery is the main treatment for PPB. The main goal of surgery is to remove the tumor. If the tumor is too large to be completely removed, or if it's not possible to completely remove the tumor, surgery may be performed after chemotherapy. Because PPB can return after treatment, regular screening for possible recurrence should continue for 48 to 60 months, after diagnosis.
The prognosis of patients with FA as a whole is considered to be better than that of most other forms of non-small cell carcinoma, including biphasic pulmonary blastoma.
Because of its rarity, there have been no randomized clinical trials of treatment of GCCL, and all information available derives from small retrospective institutional series or multicenter metadata.
The usual treatment is surgery. The surgery usually is a fertility-sparing unilateral salpingo-oophorectomy. For malignant tumours, the surgery may be radical and usually is followed by adjuvant chemotherapy, sometimes by radiation therapy. In all cases, initial treatment is followed by surveillance. Because in many cases Sertoli–Leydig cell tumour does not produce elevated tumour markers, the focus of surveillance is on repeated physical examination and imaging. Given that many cases of Sertoli–Leydig cell tumor of the ovary are hereditary, referral to a clinical genetics service should be considered.
The prognosis is generally good as the tumour tends to grow slowly and usually is benign: 25% are malignant. For malignant tumours with undifferentiated histology, prognosis is poor.
Pleuropulmonary blastoma (PPB) is a rare cancer originating in the lung or pleural cavity. It occurs most often in infants and young children but also has been reported in adults. In a retrospective review of 204 children with lung tumors, pleuropulmonary blastoma and carcinoid tumor were the most common primary tumors (83% of the 204 children had secondary tumors spread from cancers elsewhere in the body). Pleuropulmonary blastoma is regarded as malignant. The male:female ratio is approximately one.
Giant-cell lung cancers have long been considered to be exceptionally aggressive malignancies that grow very rapidly and have a very poor prognosis.
Many small series have suggested that the prognosis of lung tumors with giant cells is worse than that of most other forms of non-small-cell lung cancer (NSCLC), including squamous cell carcinoma, and spindle cell carcinoma.
The overall five-year survival rate in GCCL varies between studies but is generally considered to be very low. The (US) Armed Forces Institute of Pathology has reported a figure of 10%, and in a study examining over 150,000 lung cancer cases, a figure of 11.8% was given. However, in the latter report the 11.8% figure was based on data that included spindle cell carcinoma, a variant which is generally considered to have a less dismal prognosis than GCCL. Therefore, the likely survival of "pure" GCCL is probably lower than the stated figure.
In the large 1995 database review by Travis and colleagues, giant-cell carcinoma has the third-worst prognosis among 18 histological forms of lung cancer. (Only small-cell carcinoma and large-cell carcinoma had shorter average survival.)
Most GCCL have already grown and invaded locally and/or regionally, and/or have already metastasized distantly, and are inoperable, at the time of diagnosis.
Histological variants of lung cancer classified as sarcomatoid carcinoma include pleomorphic carcinoma, giant cell carcinoma, spindle cell carcinoma, carcinosarcoma, and pulmonary blastoma.
Sarcomatoid carcinoma is a relatively uncommon form of cancer whose malignant cells have histological, cytological, or molecular properties of both epithelial tumors ("carcinoma") and mesenchymal tumors ("sarcoma").
"Lung tumors" are neoplastic tumors of the lung These include:
Primary tumors of the lung/pulmonary system:
- Bronchial leiomyoma, a rare, benign tumor
- Lung cancer, the term commonly used to refer to "carcinoma of the lung"
- Pulmonary carcinoid tumor
- Pleuropulmonary blastoma
- Neuroendocrine tumors of the lung
- Lymphomas of the lung.
- Sarcomas of the lung.
- Some rare vascular tumors of the lung
Non-lung tumors which may grow into the lungs:
- Mediastinal tumors
- Pleural tumors
Metastasis or secondary tumors/neoplasms with other origin:
- Metastasis to the lung
Some benign tumors need no treatment; others may be removed if they cause problems such as seizures, discomfort or cosmetic concerns. Surgery is usually the most effective approach and is used to treat most benign tumors. In some case other treatments may be of use. Adenomas of the rectum may be treated with sclerotherapy, a treatment in which chemicals are used to shrink blood vessels in order to cut off the blood supply. Most benign tumors do not respond to chemotherapy or radiation therapy, although there are exceptions; benign intercranial tumors are sometimes treated with radiation therapy and chemotherapy under certain circumstances. Radiation can also be used to treat hemangiomas in the rectum. Benign skin tumors are usually surgically resected but other treatments such as cryotherapy, curettage, electrodesiccation, laser therapy, dermabrasion, chemical peels and topical medication are used.
A blastoma is a type of cancer, more common in children, that is caused by malignancies in precursor cells, often called blasts. Examples are nephroblastoma, medulloblastoma and retinoblastoma. The suffix "-blastoma" is used to imply a tumor of primitive, incompletely differentiated (or precursor) cells, e.g., chondroblastoma is composed of cells resembling the precursor of chondrocytes.
Many types of blastoma have been linked to a mutation in tumor suppressor genes. For example, pleuropulmonary blastomas have been linked to a mutation of the coding for p53. However, the mutation which allows proliferation of incompletely differentiated cells can vary from patient to patient and a mutation can alter the prognosis. In the case of retinoblastoma, patients carry a visibly abnormal karyotype, with a loss of function mutation on a specific band of chromosome 13. This recessive deletion on the rb gene is also associated with other cancer types and must be present on both alleles, for a normal cell to progress towards malignancy.
Carcinoma is a type of cancer that develops from epithelial cells. Specifically, a carcinoma is a cancer that begins in a tissue that lines the inner or outer surfaces of the body, and that arises from cells originating in the endodermal, mesodermal and ectodermal germ layer during embryogenesis.
Carcinomas occur when the DNA of a cell is damaged or altered and the cell begins to grow uncontrollably and become malignant. It is from the Greek καρκίνωμα 'karkinoma' meaning sore, ulcer, or cancer, itself derived from "karkinos" 'crab'.
Many treatment options for cancer exist. The primary ones include surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy and palliative care. Which treatments are used depends on the type, location and grade of the cancer as well as the patient's health and preferences. The treatment intent may or may not be curative.
Chemotherapy is the treatment of cancer with one or more cytotoxic anti-neoplastic drugs (chemotherapeutic agents) as part of a standardized regimen. The term encompasses a variety of drugs, which are divided into broad categories such as alkylating agents and antimetabolites. Traditional chemotherapeutic agents act by killing cells that divide rapidly, a critical property of most cancer cells.
Targeted therapy is a form of chemotherapy that targets specific molecular differences between cancer and normal cells. The first targeted therapies blocked the estrogen receptor molecule, inhibiting the growth of breast cancer. Another common example is the class of Bcr-Abl inhibitors, which are used to treat chronic myelogenous leukemia (CML). Currently, targeted therapies exist for breast cancer, multiple myeloma, lymphoma, prostate cancer, melanoma and other cancers.
The efficacy of chemotherapy depends on the type of cancer and the stage. In combination with surgery, chemotherapy has proven useful in cancer types including breast cancer, colorectal cancer, pancreatic cancer, osteogenic sarcoma, testicular cancer, ovarian cancer and certain lung cancers. Chemotherapy is curative for some cancers, such as some leukemias, ineffective in some brain tumors, and needless in others, such as most non-melanoma skin cancers. The effectiveness of chemotherapy is often limited by its toxicity to other tissues in the body. Even when chemotherapy does not provide a permanent cure, it may be useful to reduce symptoms such as pain or to reduce the size of an inoperable tumor in the hope that surgery will become possible in the future.
Children with cancer are at risk for developing various cognitive or learning problems. These difficulties may be related to brain injury stemming from the cancer itself, such as a brain tumor or central nervous system metastasis or from side effects of cancer treatments such as chemotherapy and radiation therapy. Studies have shown that chemo and radiation therapies may damage brain white matter and disrupt brain activity.
The standard treatment of COC is enucleation and curettage (E&C). Recurrence following E&C is rare.
Sertoli–Leydig cell tumour is a group of tumours composed of variable proportions of Sertoli cells, Leydig cells, and in the case of intermediate and poorly differentiated neoplasms, primitive gonadal stroma and sometimes heterologous elements.
Sertoli–Leydig cell tumour is a member of the sex cord-stromal tumour group of ovarian and testicular cancers. The tumour is rare, comprising less than 1% of testicular tumours. While the tumour can occur at any age, it occurs most often in young adults. Recent studies have shown that many cases of Sertoli–Leydig cell tumor of the ovary are caused by germline mutations in the "DICER1" gene. These hereditary cases tend to be younger, often have a multinodular thyroid goiter and there may be a personal or family history of other rare tumors such as pleuropulmonary blastoma, Wilms tumor and cervical rhabdomyosarcoma.
Closely related terms include arrhenoblastoma and androblastoma. Both terms are classified under Sertoli–Leydig cell tumour in MeSH.
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
Familial and genetic factors are identified in 5-15% of childhood cancer cases. In <5-10% of cases, there are known environmental exposures and exogenous factors, such as prenatal exposure to tobacco, X-rays, or certain medications. For the remaining 75-90% of cases, however, the individual causes remain unknown. In most cases, as in carcinogenesis in general, the cancers are assumed to involve multiple risk factors and variables.
Aspects that make the risk factors of childhood cancer different from those seen in adult cancers include:
- Different, and sometimes unique, exposures to environmental hazards. Children must often rely on adults to protect them from toxic environmental agents.
- Immature physiological systems to clear or metabolize environmental substances
- The growth and development of children in phases known as "developmental windows" result in certain "critical windows of vulnerability".
Also, a longer life expectancy in children avails for a longer time to manifest cancer processes with long latency periods, increasing the risk of developing some cancer types later in life.
There are preventable causes of childhood malignancy, such as delivery overuse and misuse of ionizing radiation through computed tomography scans when the test is not indicated or when adult protocols are used.
Underlying disease must be controlled to prevent exacerbation and worsening of ABPA, and in most patients this consists of managing their asthma or CF. Any other co-morbidities, such as sinusitis or rhinitis, should also be addressed.
Hypersensitivity mechanisms, as described above, contribute to progression of the disease over time and, when left untreated, result in extensive fibrosis of lung tissue. In order to reduce this, corticosteroid therapy is the mainstay of treatment (for example with prednisone); however, studies involving corticosteroids in ABPA are limited by small cohorts and are often not double-blinded. Despite this, there is evidence that acute-onset ABPA is improved by corticosteroid treatment as it reduces episodes of consolidation. There are challenges involved in long-term therapy with corticosteroids—which can induce severe immune dysfunction when used chronically, as well as metabolic disorders—and approaches have been developed to manage ABPA alongside potential adverse effects from corticosteroids.
The most commonly described technique, known as sparing, involves using an antifungal agent to clear spores from airways adjacent to corticosteroid therapy. The antifungal aspect aims to reduce fungal causes of bronchial inflammation, whilst also minimising the dose of corticosteroid required to reduce the immune system’s input to disease progression. The strongest evidence (double-blinded, randomized, placebo-controlled trials) is for itraconazole twice daily for four months, which resulted in significant clinical improvement compared to placebo, and was mirrored in CF patients. Using itraconazole appears to outweigh the risk from long-term and high-dose prednisone. Newer triazole drugs—such as posaconazole or voriconazole—have not yet been studied in-depth through clinical trials in this context.
Whilst the benefits of using corticosteroids in the short term are notable, and improve quality of life scores, there are cases of ABPA converting to invasive aspergillosis whilst undergoing corticosteroid treatment. Furthermore, in concurrent use with itraconazole, there is potential for drug interaction and the induction of Cushing syndrome in rare instances. Metabolic disorders, such as diabetes mellitus and osteoporosis, can also be induced.
In order to mitigate these risks, corticosteroid doses are decreased biweekly assuming no further progression of disease after each reduction. When no exacerbations from the disease are seen within three months after discontinuing corticosteroids, the patient is considered to be in complete remission. The exception to this rule is patients who are diagnosed with advanced ABPA; in this case removing corticosteroids almost always results in exacerbation and these patients are continued on low-dose corticosteroids (preferably on an alternate-day schedule).
Serum IgE can be used to guide treatment, and levels are checked every 6–8 week after steroid treatment commences, followed by every 8 weeks for one year. This allows for determination of baseline IgE levels, though it’s important to note that most patients do not entirely reduce IgE levels to baseline. Chest X-ray or CT scans are performed after 1–2 months of treatment to ensure infiltrates are resolving.
A benign tumor is a mass of cells (tumor) that lacks the ability to invade neighboring tissue or metastasize. Benign tumors do not spread into, or invade, nearby tissues. Benign tumors can sometimes be quite large, however. When removed, they usually do not grow back, whereas malignant tumors sometimes do. Unlike most benign tumors elsewhere in the body, benign brain tumors can be life threatening. Benign tumors generally have a slower growth rate than malignant tumors and the tumor cells are usually more differentiated (cells have normal features). Benign tumors are typically surrounded by an outer surface (fibrous sheath of connective tissue) or remain with the epithelium. Common examples of benign tumors include moles and uterine fibroids.
Although benign tumors will not metastasize or locally invade tissues, some types may still produce negative health effects. The growth of benign tumors produces a "mass effect" that can compress tissues and may cause nerve damage, reduction of blood to an area of the body (ischaemia), tissue death (necrosis) and organ damage. The mass effect of tumors is more prominent if the tumor is within an enclosed space such as the cranium, respiratory tract, sinus or inside bones. Tumors of endocrine tissues may overproduce certain hormones, especially when the cells are well differentiated. Examples include thyroid adenomas and adrenocortical adenomas.
Although most benign tumors are not life-threatening, many types of benign tumors have the potential to become cancerous (malignant) through a process known as tumour progression. For this reason and other possible negative health effects, some benign tumors are removed by surgery.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.