Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Correction and prevention of phosphorus deficiency typically involves increasing the levels of available phosphorus into the soil. Planters introduce more phosphorus into the soil with bone meal, rock phosphate,manure, and phosphate-fertilizers. The introduction of these compounds into the soil however does not ensure the alleviation of phosphorus deficiency. There must be phosphorus in the soil, but the phosphorus must also be absorbed by the plant. The uptake of phosphorus is limited by the chemical form in which the phosphorus is available in the soil. A large percentage of phosphorus in soil is present in chemical compounds that plants are incapable of absorbing. Phosphorus must be present in soil in specific chemical arrangements to be usable as plant nutrients. Facilitation of usable phosphorus in soil can be optimized by maintaining soil within a specified pH range. Soil acidity, measured on the pH scale, partially dictates what chemical arrangements that phosphorus forms. Between pH 6 and 7, phosphorus makes the fewest number of bonds which render the nutrient unusable to plants. At this range of acidity the likeliness of phosphorus uptake is increased and the likeliness of phosphorus deficiency is decreased. Another component in the prevention and treatment of phosphorus is the plant’s disposition to absorb nutrients. Plant species and different plants within in the same species react differently to low levels of phosphorus in soil. Greater expansion of root systems generally correlate to greater nutrient uptake. Plants within a species that have larger roots are genetically advantaged and less prone to phosphorus deficiency. These plants can be cultivated and bred as a long term phosphorus deficiency prevention method. In conjunction to root size, other genetic root adaptations to low phosphorus conditions such as mycorrhizal symbioses have been found to increase nutrient intake. These biological adaptations to roots work to maintain the levels of vital nutrients. In larger commercial agriculture settings, variation of plants to adopt these desirable phosphorus intake adaptations may be a long-term phosphorus deficiency correction method.
Calcium deficiency can sometimes be rectified by adding agricultural lime to acid soils, aiming at a pH of 6.5, unless the subject plants specifically prefer acidic soil. Organic matter should be added to the soil to improve its moisture-retaining capacity. However, because of the nature of the disorder (i.e. poor transport of calcium to low transpiring tissues), the problem cannot generally be cured by the addition of calcium to the roots. In some species, the problem can be reduced by prophylactic spraying with calcium chloride of tissues at risk.
Plant damage is difficult to reverse, so corrective action should be taken immediately, supplemental applications of calcium nitrate at 200 ppm nitrogen, for example. Soil pH should be tested, and corrected if needed, because calcium deficiency is often associated with low pH.
Early fruit will generally have the worst systems, with them typically lessening as the season progresses. Preventative measures, such as irrigating prior to especially high temperatures and stable irrigation will minimize the occurrence.
Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.
The most widely used potassium fertilizer is potassium chloride (muriate of potash). Other inorganic potassium fertilizers include potassium nitrate, potassium sulfate, and monopotassium phosphate. Potassium-rich treatments suitable for organic farming include feeding with home-made comfrey liquid, adding seaweed meal, composted bracken, and compost rich in decayed banana peels. Wood ash also has high potassium content. Adequate moisture is necessary for effective potassium uptake; low soil water reduces K uptake by plant roots. Liming acidic soils can increase potassium retention in some soils by reducing leaching; practices that increase soil organic matter can also increase potassium retention.
The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment.
Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate (200 ml of 50% solution) is also recommended.
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
Fertilisers like ammonium phosphate, calcium ammonium nitrate, urea can be supplied. Foliar spray of urea can be a quick method.
Detecting phosphorus deficiency can take multiple forms. A preliminary detection method is a visual inspection of plants. Darker green leaves and purplish or red pigment can indicate a deficiency in phosphorus. This method however can be an unclear diagnosis because other plant environment factors can result in similar discoloration symptoms. In commercial or well monitored settings for plants, phosphorus deficiency is diagnosed by scientific testing. Additionally, discoloration in plant leaves only occurs under fairly severe phosphorus deficiency so it is beneficial to planters and farmers to scientifically check phosphorus levels before discoloration occurs. The most prominent method of checking phosphorus levels is by soil testing. The major soil testing methods are Bray 1-P, Mehlich 3, and Olsen methods. Each of these methods are viable but each method has tendencies to be more accurate in known geographical areas. These tests use chemical solutions to extract phosphorus from the soil. The extract must then be analyzed to determine the concentration of the phosphorus. Colorimetry is used to determine this concentration. With the addition of the phosphorus extract into a colorimeter, there is visual color change of the solution and the degree to this color change is an indicator of phosphorus concentration. To apply this testing method on phosphorus deficiency, the measured phosphorus concentration must be compared to known values. Most plants have established and thoroughly tested optimal soil conditions. If the concentration of phosphorus measured from the colorimeter test is significantly lower than the plant’s optimal soil levels, then it is likely the plant is phosphorus deficient. The soil testing with colorimetric analysis, while widely used, can be subject to diagnostic problems as a result of interference from other present compounds and elements. Additional phosphorus detection methods such as spectral radiance and inductively coupled plasma spectrometry (ICP) are also implemented with the goal of improving reading accuracy. According to the World Congress of Soil Scientists, the advantages of these light-based measurement methods are their quickness of evaluation, simultaneous measurements of plant nutrients, and their non-destructive testing nature. Although these methods have experimental based evidence, unanimous approval of the methods has not yet been achieved.
Iron deficiency can be avoided by choosing appropriate soil for the growing conditions (e.g., avoid growing acid loving plants on lime soils), or by adding well-rotted manure or compost. If iron deficit chlorosis is suspected then check the pH of the soil with an appropriate test kit or instrument. Take a soil sample at surface and at depth. If the pH is over seven then consider soil remediation that will lower the pH toward the 6.5 - 7 range. Remediation includes: i) adding compost, manure, peat or similar organic matter (warning. Some retail blends of manure and compost have pH in the range 7 - 8 because of added lime. Read the MSDS if available. Beware of herbicide residues in manure. Source manure from a certified organic source.) ii) applying Ammonium Sulphate as a Nitrogen fertilizer (acidifying fertilizer due to decomposition of ammonium ion to nitrate in the soil and root zone) iii) applying elemental Sulphur to the soil (oxidizes over the course of months to produce sulphate/sulphite and lower pH). Note: adding acid directly e.g. sulphuric/hydrochloric/citric acid is dangerous as you may mobilize metal ions in the soil that are toxic and otherwise bound. Iron can be made available immediately to the plant by the use of iron sulphate or iron chelate compounds. Two common iron chelates are Fe EDTA and Fe EDDHA. Iron sulphate (Iron(II)_sulfate) and iron EDTA are only useful in soil up to PH 7.1 but they can be used as a foliar spray (Foliar_feeding). Iron EDDHA is useful up to PH 9 (highly alkaline) but must be applied to the soil and in the evening to avoid photodegradation. EDTA in the soil may mobilize Lead, EDDHA does not appear to.
Five interventional strategies can be used:
- Adding zinc to soil, called agronomic biofortification, which both increases crop yields and provides more dietary zinc.
- Adding zinc to food, called fortification.
- Adding zinc rich foods to diet. The foods with the highest concentration of zinc are proteins, especially animal meats, the highest being oysters. Per ounce, beef, pork, and lamb contain more zinc than fish. The dark meat of a chicken has more zinc than the light meat. Other good sources of zinc are nuts, whole grains, legumes, and yeast. Although whole grains and cereals are high in zinc, they also contain chelating phytates which bind zinc and reduce its bioavailability.
- Oral repletion via tablets (e.g. zinc gluconate) or liquid (e.g. zinc acetate). Oral zinc supplementation in healthy infants more than six months old has been shown to reduce the duration of any subsequent diarrheal episodes by about 11 hours.
- Oral repletion via multivitamin/mineral supplements containing zinc gluconate, sulfate, or acetate. It is not clear whether one form is better than another. Zinc is also found in some cold lozenges, nasal sprays, and nasal gels.
In some cases the causes of an infection or disease will be obvious (such as fin rot), though in other cases it may be due to water conditions, requiring special testing equipment and chemicals to appropriately adjust the water. Isolating diseased fish can help prevent the spread of infection to healthy fish in the tank. This also allows the use of chemicals or drugs which may damage the nitrogen cycle, plants or chemical filtration of a properly-functioning tank. Other alternatives include short baths in a bucket that contains the treated water. Salt baths can be used as an antiseptic and fungicide, and will not damage beneficial bacteria, though ordinary table salt may contain additives which can harm fish. Alternatives include aquarium salt, Kosher salt or rock salt. Gradually raising the temperature of the tank may kill certain parasites, though some diseased fish may be harmed and certain species can not tolerate high temperatures. Aeration is necessary since less oxygen is dissolved in warm water.
There are a number of effective treatments for many stains of bacterial infections. Three of the most common are tetracycline, penicillin and naladixic acid. Salt baths are another effective treatment.
The goal of therapy is to treat the hypercalcaemia first and subsequently effort is directed to treat the underlying cause.
Initial therapy:
- hydration, increasing salt intake, and forced diuresis.
- hydration is needed because many patients are dehydrated due to vomiting or kidney defects in concentrating urine.
- increased salt intake also can increase body fluid volume as well as increasing urine sodium excretion, which further increases urinary potassium excretion.
- after rehydration, a loop diuretic such as furosemide can be given to permit continued large volume intravenous salt and water replacement while minimizing the risk of blood volume overload and pulmonary oedema. In addition, loop diuretics tend to depress calcium reabsorption by the kidney thereby helping to lower blood calcium levels
- can usually decrease serum calcium by 1–3 mg/dL within 24 hours
- caution must be taken to prevent potassium or magnesium depletion
Disease cures are almost always more expensive and less effective than simple prevention measures. Often precautions involve maintaining a stable aquarium that is adjusted for the specific species of fish that are kept and not over-crowding a tank or over-feeding the fish. Common preventive strategies include avoiding the introduction of infected fish, invertebrates or plants by quarantining new additions before adding them to an established tank, and discarding water from external sources rather than mixing it with clean water. Similarly, foods for herbivorous fish such as lettuce or cucumbers should be washed before being placed in the tank. Containers that do not have water filters or pumps to circulate water can also increase stress to fish. Other stresses on fish and tanks can include certain chemicals, soaps and detergents, and impacts to tank walls causing shock waves that can damage fish.
Standard intravenous preparations of potassium phosphate are available and are routinely used in malnourished patients and alcoholics. Oral supplementation is also useful where no intravenous treatment are available. Historically one of the first demonstrations of this was in concentration camp victims who died soon after being re-fed: it was observed that those given milk (high in phosphate) had a higher survival rate than those who did not get milk.
Monitoring parameters during correction with IV phosphate
- Phosphorus levels should be monitored after 2 to 4 hours after each dose, also monitor serum potassium, calcium and magnesium. Cardiac monitoring is also advised.
Boric acid (16.5%boron), borax (11.3% boron) or SoluBor (20.5% boron) can be applied to soils to correct boron deficiency. Typical applications of actual boron are about 1.1 kg/hectare or 1.0 lb/acre but optimum levels of boron vary with plant type. Borax, Boric Acid or Solubor can be dissolved in water and sprayed or applied to soil as a dust. Excess boron is toxic to plants so care must be taken to ensure correct application rate and even coverage. Leaves of many plants are damaged by boron; therefore, when in doubt, only apply to soil. Application of boron may not correct boron deficiency in alkaline soils because even with the addition of boron, it may remain unavailable for plant absorption. Continued application of boron may be necessary in soils that are susceptible to leaching such as sandy soils. Flushing soils containing toxic levels of boron with water can remove the boron through leaching.
High phosphate levels can be avoided with phosphate binders and dietary restriction of phosphate. If the kidneys are operating normally, a saline diuresis can be induced to renally eliminate the excess phosphate. In extreme cases, the blood can be filtered in a process called hemodialysis, removing the excess phosphate.
Treatment involves increasing dietary intake of calcium, phosphates and vitamin D. Exposure to ultraviolet B light (most easily obtained when the sun is highest in the sky), cod liver oil, halibut-liver oil, and viosterol are all sources of vitamin D.
A sufficient amount of ultraviolet B light in sunlight each day and adequate supplies of calcium and phosphorus in the diet can prevent rickets. Darker-skinned people need to be exposed longer to the ultraviolet rays. The replacement of vitamin D has been proven to correct rickets using these methods of ultraviolet light therapy and medicine.
Recommendations are for 400 international units (IU) of vitamin D a day for infants and children. Children who do not get adequate amounts of vitamin D are at increased risk of rickets. Vitamin D is essential for allowing the body to uptake calcium for use in proper bone calcification and maintenance.
Supplemental zinc can prevent iron absorption, leading to iron deficiency and possible peripheral neuropathy, with loss of sensation in extremities. Zinc and iron should be taken at different times of the day.
Sufficient vitamin D levels can also be achieved through dietary supplementation and/or exposure to sunlight. Vitamin D (cholecalciferol) is the preferred form since it is more readily absorbed than vitamin D. Most dermatologists recommend vitamin D supplementation as an alternative to unprotected ultraviolet exposure due to the increased risk of skin cancer associated with sun exposure. Endogenous production with full body exposure to sunlight is approximately 250 µg (10,000 IU) per day.
According to the American Academy of Pediatrics (AAP), all infants, including those who are exclusively breast-fed, may need vitamin D supplementation until they start drinking at least of vitamin D-fortified milk or formula a day.
Calcium (Ca) deficiency is a plant disorder that can be caused by insufficient level of available calcium in the growing medium, but is more frequently a product of low transpiration of the whole plant or more commonly the affected tissue. Plants are susceptible to such localized calcium deficiencies in low or non-transpiring tissues because calcium is not transported in the phloem. This may be due to water shortages, which slow the transportation of calcium to the plant, poor uptake of calcium through the stem, or too much nitrogen in the soil.
Novel zinc biomarkers, such as the erythrocyte LA:DGLA ratio, have shown promise in pre-clinical and clinical trials and are being developed to more accurately detect dietary zinc deficiency.
Manganese deficiency can be easy to spot in plants because, much like magnesium deficiency, the leaves start to turn yellow and undergo interveinal chlorosis. The difference between these two is that the younger leaves near the top of the plant show symptoms first because manganese is not mobile while in magnesium deficiency show symptoms in older leaves near the bottom of the plant.
Magnesium (Mg) deficiency is a detrimental plant disorder that occurs most often in strongly acidic, light, sandy soils, where magnesium can be easily leached away. Magnesium is an essential micro nutrient found from 0.2-0.4% dry matter and is necessary for normal plant growth. Excess potassium, generally due to fertilizers, further aggravates the stress from the magnesium deficiency, as does aluminium toxicity.
Magnesium has an important role in photosynthesis because it forms the central atom of chlorophyll. Therefore, without sufficient amounts of magnesium, plants begin to degrade the chlorophyll in the old leaves. This causes the main symptom of magnesium deficiency, chlorosis, or yellowing between leaf veins, which stay green, giving the leaves a marbled appearance. Due to magnesium’s mobile nature, the plant will first break down chlorophyll in older leaves and transport the Mg to younger leaves which have greater photosynthetic needs. Therefore, the first sign of magnesium deficiency is the chlorosis of old leaves which progresses to the young leaves as the deficiency continues. Magnesium also is a necessary activator for many critical enzymes, including ribulosbiphosphate carboxylase (RuBisCO) and phosphoenolpyruvate carboxylase (PEPC), both essential enzymes in carbon fixation. Thus low amounts of Mg lead to a decrease in photosynthetic and enzymatic activity within the plants. Magnesium is also crucial in stabilizing ribosome structures, hence, a lack of magnesium causes depolymerization of ribosomes leading to pre-mature aging of the plant. After prolonged magnesium deficiency, necrosis and dropping of older leaves occurs. Plants deficient in magnesium also produce smaller, woodier fruits.
Magnesium deficiency may be confused with zinc or chlorine deficiencies, viruses, or natural ageing since all have similar symptoms. Adding Epsom salts (as a solution of 25 grams per liter or 4 oz per gal) or crushed dolomitic limestone to the soil can rectify magnesium deficiencies. For a more organic solution, applying home-made compost mulch can prevent leaching during excessive rainfall and provide plants with sufficient amounts of nutrients, including magnesium.
Once boron has been absorbed by the plant and incorporated into the various structures that require boron, it is unable to disassemble these structures and re-transport boron through the plant resulting in boron being a non-mobile nutrient. Due to translocation difficulties the youngest leaves often show deficiency symptoms first.