Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
Iron deficiency can be avoided by choosing appropriate soil for the growing conditions (e.g., avoid growing acid loving plants on lime soils), or by adding well-rotted manure or compost. If iron deficit chlorosis is suspected then check the pH of the soil with an appropriate test kit or instrument. Take a soil sample at surface and at depth. If the pH is over seven then consider soil remediation that will lower the pH toward the 6.5 - 7 range. Remediation includes: i) adding compost, manure, peat or similar organic matter (warning. Some retail blends of manure and compost have pH in the range 7 - 8 because of added lime. Read the MSDS if available. Beware of herbicide residues in manure. Source manure from a certified organic source.) ii) applying Ammonium Sulphate as a Nitrogen fertilizer (acidifying fertilizer due to decomposition of ammonium ion to nitrate in the soil and root zone) iii) applying elemental Sulphur to the soil (oxidizes over the course of months to produce sulphate/sulphite and lower pH). Note: adding acid directly e.g. sulphuric/hydrochloric/citric acid is dangerous as you may mobilize metal ions in the soil that are toxic and otherwise bound. Iron can be made available immediately to the plant by the use of iron sulphate or iron chelate compounds. Two common iron chelates are Fe EDTA and Fe EDDHA. Iron sulphate (Iron(II)_sulfate) and iron EDTA are only useful in soil up to PH 7.1 but they can be used as a foliar spray (Foliar_feeding). Iron EDDHA is useful up to PH 9 (highly alkaline) but must be applied to the soil and in the evening to avoid photodegradation. EDTA in the soil may mobilize Lead, EDDHA does not appear to.
In cases of suspected copper poisoning, penicillamine is the drug of choice, and dimercaprol, a heavy metal chelating agent, is often administered. Vinegar is not recommended to be given, as it assists in solubilizing insoluble copper salts. The inflammatory symptoms are to be treated on general principles, as are the nervous ones.
There is some evidence that alpha-lipoic acid (ALA) may work as a milder chelator of tissue-bound copper. Alpha lipoic acid is also being researched for chelating other heavy metals, such as mercury.
Fertilisers like ammonium phosphate, calcium ammonium nitrate, urea can be supplied. Foliar spray of urea can be a quick method.
Correction and prevention of phosphorus deficiency typically involves increasing the levels of available phosphorus into the soil. Planters introduce more phosphorus into the soil with bone meal, rock phosphate,manure, and phosphate-fertilizers. The introduction of these compounds into the soil however does not ensure the alleviation of phosphorus deficiency. There must be phosphorus in the soil, but the phosphorus must also be absorbed by the plant. The uptake of phosphorus is limited by the chemical form in which the phosphorus is available in the soil. A large percentage of phosphorus in soil is present in chemical compounds that plants are incapable of absorbing. Phosphorus must be present in soil in specific chemical arrangements to be usable as plant nutrients. Facilitation of usable phosphorus in soil can be optimized by maintaining soil within a specified pH range. Soil acidity, measured on the pH scale, partially dictates what chemical arrangements that phosphorus forms. Between pH 6 and 7, phosphorus makes the fewest number of bonds which render the nutrient unusable to plants. At this range of acidity the likeliness of phosphorus uptake is increased and the likeliness of phosphorus deficiency is decreased. Another component in the prevention and treatment of phosphorus is the plant’s disposition to absorb nutrients. Plant species and different plants within in the same species react differently to low levels of phosphorus in soil. Greater expansion of root systems generally correlate to greater nutrient uptake. Plants within a species that have larger roots are genetically advantaged and less prone to phosphorus deficiency. These plants can be cultivated and bred as a long term phosphorus deficiency prevention method. In conjunction to root size, other genetic root adaptations to low phosphorus conditions such as mycorrhizal symbioses have been found to increase nutrient intake. These biological adaptations to roots work to maintain the levels of vital nutrients. In larger commercial agriculture settings, variation of plants to adopt these desirable phosphorus intake adaptations may be a long-term phosphorus deficiency correction method.
The most widely used potassium fertilizer is potassium chloride (muriate of potash). Other inorganic potassium fertilizers include potassium nitrate, potassium sulfate, and monopotassium phosphate. Potassium-rich treatments suitable for organic farming include feeding with home-made comfrey liquid, adding seaweed meal, composted bracken, and compost rich in decayed banana peels. Wood ash also has high potassium content. Adequate moisture is necessary for effective potassium uptake; low soil water reduces K uptake by plant roots. Liming acidic soils can increase potassium retention in some soils by reducing leaching; practices that increase soil organic matter can also increase potassium retention.
Five interventional strategies can be used:
- Adding zinc to soil, called agronomic biofortification, which both increases crop yields and provides more dietary zinc.
- Adding zinc to food, called fortification.
- Adding zinc rich foods to diet. The foods with the highest concentration of zinc are proteins, especially animal meats, the highest being oysters. Per ounce, beef, pork, and lamb contain more zinc than fish. The dark meat of a chicken has more zinc than the light meat. Other good sources of zinc are nuts, whole grains, legumes, and yeast. Although whole grains and cereals are high in zinc, they also contain chelating phytates which bind zinc and reduce its bioavailability.
- Oral repletion via tablets (e.g. zinc gluconate) or liquid (e.g. zinc acetate). Oral zinc supplementation in healthy infants more than six months old has been shown to reduce the duration of any subsequent diarrheal episodes by about 11 hours.
- Oral repletion via multivitamin/mineral supplements containing zinc gluconate, sulfate, or acetate. It is not clear whether one form is better than another. Zinc is also found in some cold lozenges, nasal sprays, and nasal gels.
In some cases the causes of an infection or disease will be obvious (such as fin rot), though in other cases it may be due to water conditions, requiring special testing equipment and chemicals to appropriately adjust the water. Isolating diseased fish can help prevent the spread of infection to healthy fish in the tank. This also allows the use of chemicals or drugs which may damage the nitrogen cycle, plants or chemical filtration of a properly-functioning tank. Other alternatives include short baths in a bucket that contains the treated water. Salt baths can be used as an antiseptic and fungicide, and will not damage beneficial bacteria, though ordinary table salt may contain additives which can harm fish. Alternatives include aquarium salt, Kosher salt or rock salt. Gradually raising the temperature of the tank may kill certain parasites, though some diseased fish may be harmed and certain species can not tolerate high temperatures. Aeration is necessary since less oxygen is dissolved in warm water.
There are a number of effective treatments for many stains of bacterial infections. Three of the most common are tetracycline, penicillin and naladixic acid. Salt baths are another effective treatment.
Calcium deficiency can sometimes be rectified by adding agricultural lime to acid soils, aiming at a pH of 6.5, unless the subject plants specifically prefer acidic soil. Organic matter should be added to the soil to improve its moisture-retaining capacity. However, because of the nature of the disorder (i.e. poor transport of calcium to low transpiring tissues), the problem cannot generally be cured by the addition of calcium to the roots. In some species, the problem can be reduced by prophylactic spraying with calcium chloride of tissues at risk.
Plant damage is difficult to reverse, so corrective action should be taken immediately, supplemental applications of calcium nitrate at 200 ppm nitrogen, for example. Soil pH should be tested, and corrected if needed, because calcium deficiency is often associated with low pH.
Early fruit will generally have the worst systems, with them typically lessening as the season progresses. Preventative measures, such as irrigating prior to especially high temperatures and stable irrigation will minimize the occurrence.
Supplemental zinc can prevent iron absorption, leading to iron deficiency and possible peripheral neuropathy, with loss of sensation in extremities. Zinc and iron should be taken at different times of the day.
Treatment of KBD is palliative. Surgical corrections have been made with success by Chinese and Russian orthopedists. By the end of 1992, Médecins Sans Frontières—Belgium started a physical therapy programme aiming at alleviating the symptoms of KBD patients with advanced joint impairment and pain (mainly adults), in Nyemo county, Lhasa prefecture. Physical therapy had significant effects on joint mobility and joint pain in KBD patients. Later on (1994–1996), the programme has been extended to several other counties and prefectures in Tibet.
Chelation therapy is a medical procedure that involves the administration of chelating agents to remove heavy metals from the body. Chelating agents are molecules that have multiple electron-donating groups, which can form stable coordination complexes with metal ions. Complexation prevents the metal ions from reacting with molecules in the body, and enable them to be dissolved in blood and eliminated in urine. It should only be used in people who have a diagnosis of metal intoxication. That diagnosis should be validated with tests done in appropriate biological samples.
Chelation therapy is administered under very careful medical supervision due to various inherent risks. When the therapy is administered properly, the chelation drugs have significant side effects. Chelation administered inappropriately can cause neurodevelopmental toxicity, increase risk of developing cancer, and cause death; chelation also removes essential metal elements and requires measures to prevent their loss.
Cookware in which copper is the main structural element (as opposed to copper clad, copper sandwiched or copper colored) is sometimes manufactured without a lining when intended to be used for any of a number of specific culinary tasks, such as preparing preserves or meringues. Otherwise, copper cookware is lined with a non-reactive metal to prevent contact between acidic foods and the structural copper element of the cookware.
Excepting for acute or chronic conditions, exposure to copper in cooking is generally considered harmless. Following Paracelsus, dosage makes the poison; as this pertains to copper "a defense mechanism has apparently evolved as a consequence of which toxicity in man is very unusual."
Acute exposure and attendant copper toxicity is possible when cooking or storing highly acidic foods in unlined copper vessels for extended periods, or by exposing foodstuffs to reactive copper salts (copper corrosion, or verdigris). Continuous, small ("chronic") exposures of acidic foods to copper may also result in toxicity in cases where either surface area interaction potentials are significant, pH is exceptionally low and concentrated (in the case of cooking with, for example, vinegar or wine), or both, and insufficient time elapses between exposures for normal homeostatic elimination of excess copper.
Exceptions to the above may be observed in the case of jam, jelly and preserve -making, wherein unlined copper vessels are used to cook (not to store) acidic preparations, in this case of fruit. Methods of jamming and preserving specify sugar as chemically necessary to the preserving (antibacterial) action, which has the additional effect of mediating (buffering) the interaction of fruit acid with copper, permitting the use of the metal for its efficient thermal transfer properties.
Prevention of Kashin–Beck disease has a long history. Intervention strategies were mostly based on one of the three major theories of its cause.
Selenium supplementation, with or without additional antioxidant therapy (vitamin E and vitamin C) has been reported to be successful, but in other studies no significant decrease could be shown compared to a control group. Major drawbacks of selenium supplementation are logistic difficulties (daily or weekly intake, drug supply), potential toxicity (in case of less controlled supplementation strategies), associated iodine deficiency (that should be corrected before selenium supplementation to prevent further deterioration of thyroid status) and low compliance. The latter was certainly the case in Tibet, where a selenium supplementation has been implemented from 1987 to 1994 in areas of high endemicity.
With the mycotoxin theory in mind, backing of grains before storage was proposed in Guangxi province, but results are not reported in international literature. Changing from grain source has been reported to be effective in Heilongjiang province and North Korea.
With respect to the role of drinking water, changing of water sources to deep well water has been reported to decrease the X-ray metaphyseal detection rate in different settings.
In general, the effect of preventive measures however remains controversial, due to methodological problems (no randomised controlled trials), lack of documentation or, as discussed above, due to inconsistency of results.
The current mainstay of manganism treatment is levodopa and chelation with EDTA. Both have limited and at best transient efficacy. Replenishing the deficit of dopamine with levodopa has been shown to initially improve extrapyramidal symptoms, but the response to treatment goes down after 2 or 3 years, with worsening condition of the same patients noted even after 10 years since last exposure to manganese. Enhanced excretion of manganese prompted by chelation therapy brings its blood levels down but the symptoms remain largely unchanged, raising questions about efficacy of this form of treatment.
Increased ferroportin protein expression in human embryonic kidney (HEK293) cells is associated with decreased intracellular manganese concentration and attenuated cytotoxicity, characterized by the reversal of Mn-reduced glutamate uptake and diminished lactate dehydrogenase (LDH) leakage.
Disease cures are almost always more expensive and less effective than simple prevention measures. Often precautions involve maintaining a stable aquarium that is adjusted for the specific species of fish that are kept and not over-crowding a tank or over-feeding the fish. Common preventive strategies include avoiding the introduction of infected fish, invertebrates or plants by quarantining new additions before adding them to an established tank, and discarding water from external sources rather than mixing it with clean water. Similarly, foods for herbivorous fish such as lettuce or cucumbers should be washed before being placed in the tank. Containers that do not have water filters or pumps to circulate water can also increase stress to fish. Other stresses on fish and tanks can include certain chemicals, soaps and detergents, and impacts to tank walls causing shock waves that can damage fish.
Manganese deficiency can be easy to spot in plants because, much like magnesium deficiency, the leaves start to turn yellow and undergo interveinal chlorosis. The difference between these two is that the younger leaves near the top of the plant show symptoms first because manganese is not mobile while in magnesium deficiency show symptoms in older leaves near the bottom of the plant.
Zinc has been used therapeutically at a dose of 150 mg/day for months and in some cases for years, and in one case at a dose of up to 2000 mg/day zinc for months. A decrease in copper levels and hematological changes have been reported; however, those changes were completely reversed with the cessation of zinc intake.
However, zinc has been used as zinc gluconate and zinc acetate lozenges for treating the common cold and therefore the safety of usage at about 100 mg/day level is a relevant question. Thus, given that doses of over 150 mg/day for months to years has caused no permanent harm in many cases, a one-week usage of about 100 mg/day of zinc in the form of lozenges would not be expected to cause serious or irreversible adverse health issues in most persons.
Unlike iron, the elimination of zinc is concentration-dependent.
Boric acid (16.5%boron), borax (11.3% boron) or SoluBor (20.5% boron) can be applied to soils to correct boron deficiency. Typical applications of actual boron are about 1.1 kg/hectare or 1.0 lb/acre but optimum levels of boron vary with plant type. Borax, Boric Acid or Solubor can be dissolved in water and sprayed or applied to soil as a dust. Excess boron is toxic to plants so care must be taken to ensure correct application rate and even coverage. Leaves of many plants are damaged by boron; therefore, when in doubt, only apply to soil. Application of boron may not correct boron deficiency in alkaline soils because even with the addition of boron, it may remain unavailable for plant absorption. Continued application of boron may be necessary in soils that are susceptible to leaching such as sandy soils. Flushing soils containing toxic levels of boron with water can remove the boron through leaching.
Symptoms include leaves turning yellow or brown in the margins between the veins which may remain green, while young leaves may appear to be bleached. Fruit would be of poor quality and quantity. Any plant may be affected, but raspberries and pears are particularly susceptible, as well as most acid-loving plants such as azaleas and camellias.
Novel zinc biomarkers, such as the erythrocyte LA:DGLA ratio, have shown promise in pre-clinical and clinical trials and are being developed to more accurately detect dietary zinc deficiency.
Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.
Lithium is used in some medications, specifically to treat bipolar disorder. The level of "sufficient" medication is thought by many physicians to be close to toxic tolerance for kidney function. Therefore, the patient is often monitored for this purpose.
The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment.
Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate (200 ml of 50% solution) is also recommended.
Before commencing treatment, there should be definitive diagnosis of the underlying cause for iron deficiency. This is particularly the case in older patients, who are most susceptible to colorectal cancer and the gastrointestinal bleeding it often causes. In adults, 60% of patients with iron deficiency anemia may have underlying gastrointestinal disorders leading to chronic blood loss.
It is likely that the cause of the iron deficiency will need treatment as well.
Upon diagnosis, the condition can be treated with iron supplements. The choice of supplement will depend upon both the severity of the condition, the required speed of improvement (e.g. if awaiting elective surgery) and the likelihood of treatment being effective (e.g. if has underlying IBD, is undergoing dialysis, or is having ESA therapy).
Examples of oral iron that are often used are ferrous sulfate, ferrous gluconate, or amino acid chelate tablets. Recent research suggests the replacement dose of iron, at least in the elderly with iron deficiency, may be as little as 15 mg per day of elemental iron.