Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because Cherubism changes and improves over time the treatment should be individually determined. Generally moderate cases are watched until they subside or progress into the more severe range. Severe cases may require surgery to eliminate bulk cysts and fibrous growth of the maxilla and mandible. Surgical bone grafting of the cranial facial bones may be successful on some patients. Surgery is preferred for patients ages 5 to 15. Special consideration should be taken when operating on the face to avoid the marginal mandibular branch of the facial nerve as well as the zygomatic branch of the facial nerve. Unintentional damage to these nerves can decrease muscle strength in the face and mandible region. Orthodontic treatment is generally required to avoid permanent dental problems arising from malocclusive bite, misplaced, and unerupted permanent teeth. Orthodontic treatment may be used to erupt permanent teeth that have been unable to descend due to lesions and cysts being in their path of eruption. Patients with orbital issues of diplopia, eye proptosis, and visual loss will require ophthalmologic treatment.
Oral phosphate, 9, calcitriol, 9; in the event of severe bowing, an osteotomy may be performed to correct the leg shape.
Since about 2002, some patients with this disorder have been offered drug therapy with bisphosphonates (a class of osteoporosis drugs) to treat problems with bone resorption associated with the bone breakdown and skeletal malformations that characterize this disorder. Brand names include Actonel (risedronate/alendronate), made by Merck Pharmaceuticals. Other drugs include Pamidronate, made by Novartis and Strontium Ranelate, made by Eli Lilly. However, for more progressive cases, surgery and bone grafting are necessary.
Osteochondromas are benign lesions and do not affect life expectancy. Complete excision of osteochondroma is curative and the reoccurrences take place when the removal of tumor is incomplete. Multiple reoccurrences in a well-excised lesion indicate that it may be malignant. The risk of malignant transformation takes place in 1–5% of individuals. If any symptoms of cancerous tumor takes place, then the patient should be evaluated by a bone specialist. No treatment is necessary for Solitary osteochondromas that are asymptomatic. Treatments for solitary osteochondroma are careful observation over time and taking regular x-rays to monitor any changes in the tumor. If the lesion is causing pain with activity, nerve or vessel impingement, or if the bone growth has fully matured and the presence of a large cartilage cap is prominent, then it is advised that the tumor be surgically removed.
Osteochondromas have a low rate of malignancy (<1%) and resection of the tumor is suggested if symptoms such as pain, limitation of movement, or impingement on nerves or vessels occur. Resection of the tumor also takes place when the tumor increases in size and progresses towards malignancy. During surgical resection, the entire lesion along with the cartilaginous cap should be removed to minimize any chances of reoccurrences. Surgical treatment becomes the sole treatment of choice if common complications such as fractures, symptoms of peripheral nerves such as paresthesia, paraplegia, peroneal neuropathy, and upper limb neuropathy take place. A prophylactic resection is suggested if the lesion lies next to a vessel.
Depending on the size and location of the tumor, the time it takes to return to normal daily activities varies between individuals. Limitation on some activities is advised if pain or discomfort persists after surgical excision.
Treatment for CLSD is largely focused on treating the symptoms of the disorder, because it is still in the early stages of research. Symptomatic treatment is also the only option due to the genetic nature of the disorder. Treatment may include surgeries to correct facial and cranial dysmorphisms or therapy sessions to help alleviate behavioral abnormalities associated with the disorder.
Pancreatic exocrine insufficiency may be treated through pancreatic enzyme supplementation, while severe skeletal abnormalities may require surgical intervention. Neutropenia may be treated with granulocyte-colony stimulating factor (GCSF) to boost peripheral neutrophil counts. However, there is ongoing and unresolved concern that this drug could contribute to the development of leukemia. Signs of progressive marrow failure may warrant bone marrow transplantation (BMT). This has been used successfully to treat hematological aspects of disease. However, SDS patients have an elevated occurrence of BMT-related adverse events, including graft-versus-host disease (GVHD) and toxicity relating to the pre-transplant conditioning regimen. In the long run, study of the gene that is mutated in SDS should improve understanding of the molecular basis of disease. This, in turn, may lead to novel therapeutic strategies, including gene therapy and other gene- or protein-based approaches.
Because this genetic anomaly is genetically linked, genetic counseling may be the only way to decrease occurrences of Cherubism. The lack of severe symptoms in the parents may be the cause of failure in recognizing the disorder. The optimal time to be tested for mutations is prior to having children. The disorder results from a genetic mutation, and this gene has been found to spontaneously mutate. Therefore, there may be no prevention techniques available.
Though the children affected with CLSD will have problems throughout life, the treatment for this disease thus far is symptomatic. However, prognosis is good; at the time of the most recently published articles, identified children were still alive at over 4 years of age.
Mutant proteins still maintain some residual activity, allowing for the release of some collagen, but still form an extremely distended endoplasmic reticulum.
Non-steroidal anti-inflammatory drugs (NSAIDs) can give significant relief of the symptoms. Treatment of lung cancer or other causes of hypertrophic osteoarthropathy results in regression of symptoms for some patients.
There is no cure as of now. Treatment is directed towards the specific symptoms that are present in each individual. Individuals with hearing loss are able to get treated with hearing aids.
There is no known specific treatment for this condition. Management is supportive.
There is no medical treatment for either syndrome but there are some recommendations that can help with prevention or early identification of some of the problems. Children with either syndrome should have their hearing tested, and adults should be aware that the hearing loss may not develop until the adult years. Yearly visits to an ophthalmologist or other eye care professional who has been informed of the diagnosis of Stickler or Marshall syndrome is important for all affected individuals. Children should have the opportunity to have myopia corrected as early as possible, and treatment for cataracts or detached retinas may be more effective with early identification. Support for the joints is especially important during sports, and some recommend that contact sports should be avoided by those who have very loose joints.
Treatment of Wiskott–Aldrich syndrome is currently based on correcting symptoms. Aspirin and other nonsteroidal anti-inflammatory drugs should be avoided, since these may interfere with platelet function. A protective helmet can protect children from bleeding into the brain which could result from head injuries. For severely low platelet counts, patients may require platelet transfusions or removal of the spleen. For patients with frequent infections, intravenous immunoglobulins (IVIG) can be given to boost the immune system. Anemia from bleeding may require iron supplementation or blood transfusion.
As Wiskott–Aldrich syndrome is primarily a disorder of the blood-forming tissues, a hematopoietic stem cell transplant, accomplished through a umbilical cord blood or bone marrow transplant offers the only current hope of cure. This may be recommended for patients with HLA-identical donors, matched sibling donors, or even in cases of incomplete matches if the patient is age 5 or under.
Studies of correcting Wiskott–Aldrich syndrome with gene therapy using a lentivirus have begun.
Proof-of-principle for successful hematopoietic stem cell gene therapy has been provided for patients with Wiskott–Aldrich syndrome.
Currently, many investigators continue to develop optimized gene therapy vectors. In July 2013 the Italian San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) reported that three children with Wiskott–Aldrich syndrome showed significant improvement 20–30 months after being treated with a genetically modified lentivirus. In April 2015 results from a follow-up British and French trial where six children with Wiskott–Aldrich syndrome were treated with gene therapy were described as promising. Median follow-up time was 27 months.
A cure for Werner syndrome has not yet been discovered. It is often treated by managing the associated diseases and relieving symptoms to improve quality of life. The skin ulcers that accompany WS can be treated in several ways, depending on the severity. Topical treatments can be used for minor ulcers, but are not effective in preventing new ulcers from occurring. In the most severe cases, surgery may be required to implant a skin graft or amputate a limb if necessary. Diseases commonly associated with Werner Syndrome such as diabetes and cancer are treated in generally the same ways as they would be for a non-Werner Syndrome individual. A change in diet & exercise can help prevent and control arteriosclerosis, and regular cancer screenings can allow for early detection of cancer.
There is recent evidence that suggests that the cytokine-suppressive anti-inflammatory drug, SB203580, may be a possible therapeutic option for patients with Werner's Syndrome. This drug targets the p38 signaling pathway, which may become activated as a result of genomic instability and stalled replication forks that are characteristic mutations in WS. This activation of p38 may play a role in the onset of premature cell aging, skin aging, cataracts, and graying of the hair. The p38 pathway has also been implicated in the anti-inflammatory response that causes atherosclerosis, diabetes, and osteoporosis, all of which are associated with Werner's Syndrome. This drug has shown to revert the aged characteristics of young WS cells to those seen in normal, young cells and improve the lifespan of WS cells "in vitro". SB203580 is still in the clinical trial stages, and the same results have not yet been seen "in vivo".
In 2010, vitamin C supplementation was found to reverse the premature aging and several tissue dysfunctions in a genetically modified mouse model of the disease. Vitamin C supplementation also appeared to normalize several age-related molecular markers such as the increased levels of the transcription factor NF-κB. In addition, it decreases activity of genes activated in human Werner syndrome and increases gene activity involved in tissue repair. Supplementation of vitamin C is suspected to be beneficial in the treatment of human Werner syndrome, although there was no evidence of anti-aging activity in nonmutant mice. In general, treatments are available for only the symptoms or complications and not for the disease itself.
The major types of medications used to treat ankylosing spondylitis are pain-relievers and drugs aimed at stopping or slowing the progression of the disease. All of these have potentially serious side effects. Pain-relieving drugs come in two major classes:
- The mainstay of therapy in all seronegative spondyloarthropathies are anti-inflammatory drugs, which include NSAIDs such as ibuprofen, phenylbutazone, diclofenac, indomethacin, naproxen and COX-2 inhibitors, which reduce inflammation and pain. Indomethacin is a drug of choice. 2012 research showed that those with AS and elevated levels of acute phase reactants seem to benefit most from continuous treatment with NSAIDs.
- Opioid painkillers
Medications used to treat the progression of the disease include the following:
- Disease-modifying antirheumatic drugs (DMARDs) such as sulfasalazine can be used in people with peripheral arthritis. For axial involvement, evidence does not support sulfasalazine. Other DMARDS, such as methotrexate, did not have enough evidence to prove their effect. Generally, systemic corticosteroids were not used due to lack of evidence. Local injection with corticosteroid can be used for certain people with peripheral arthritis.
- Tumor necrosis factor-alpha (TNFα) blockers (antagonists), such as the biologics etanercept, infliximab, golimumab and adalimumab, have shown good short-term effectiveness in the form of profound and sustained reduction in all clinical and laboratory measures of disease activity. Trials are ongoing to determine their long-term effectiveness and safety. The major drawback is the cost. An alternative may be the newer, orally-administered non-biologic apremilast, which inhibits TNF-α secretion, but a recent study did not find the drug useful for ankylosing spondylitis.
- Anti-interleukin-6 inhibitors such as tocilizumab, currently approved for the treatment of rheumatoid arthritis, and rituximab, a monoclonal antibody against CD20, are also undergoing trials.
- Interleukin-17A inhibitor secukinumab is an option for the treatment of active ankylosing spondylitis that has responded inadequately to (TNFα) blockers.
There is no cure for AS, although treatments and medications can reduce symptoms and pain.
Hajdu–Cheney syndrome, also called acroosteolysis with osteoporosis and changes in skull and mandible, arthrodentoosteodysplasia, and Cheney syndrome, is an extremely rare autosomal dominant congenital disorder of the connective tissue characterized by severe and excessive bone resorption leading to osteoporosis and a wide range of other possible symptoms. Mutations in the "NOTCH2" gene, identified in 2011, cause HCS. HCS is so rare that only about 70 cases have been reported worldwide, since the discovery of the syndrome in 1948.
No intervention is usually recommended unless they are causing difficulty to the infant or mother.
However some recommend that they be removed as the tooth can cut or amputate the tip of the tongue.
They should be left in the mouth as long as possible to decrease the likelihood of removing permanent tooth buds with the natal tooth. They should also not be removed if the infant has hypoprothrombinemia. In case of complications when the natal teeth need to be removed, dental radiographs should be obtained whenever possible, and evaluated and followed up with pediatric dentists.
Some patients have no symptoms, spontaneous remission, or a relapsing/remitting course, making it difficult to decide whether therapy is needed. In 2002, authors from Sapienza University of Rome stated on the basis of a comprehensive literature review that "clinical observation without treatment is advisable when possible."
Therapeutic options include surgery, radiation therapy, and chemotherapy. Surgery is used to remove single lymph nodes, central nervous system lesions, or localized cutaneous disease. In 2014, Dalia and colleagues wrote that for patients with extensive or systemic Rosai–Dorfman disease, "a standard of care has not been established" concerning radiotherapy and chemotherapy.
Opsismodysplasia is a type of skeletal dysplasia (a bone disease that interferes with bone development) first described by Zonana and associates in 1977, and designated under its current name by Maroteaux (1984). Derived from the Greek "opsismos" ("late"), the name "opsismodysplasia" describes a delay in bone maturation. In addition to this delay, the disorder is characterized by (short or undersized bones), particularly of the hands and feet, delay of ossification (bone cell formation), platyspondyly (flattened vertebrae), irregular metaphyses, an array of facial aberrations and respiratory distress related to chronic infection. Opsismodysplasia is congenital, being apparent at birth. It has a variable mortality, with some affected individuals living to adulthood. The disorder is rare, with an incidence of less than 1 per 1,000,000 worldwide. It is inherited in an autosomal recessive pattern, which means the defective (mutated) gene that causes the disorder is located on an autosome, and the disorder occurs when two copies of this defective gene are inherited. No specific gene has been found to be associated with the disorder. It is similar to spondylometaphyseal dysplasia, Sedaghatian type.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
X-linked hypophosphatemia (XLH), also called X-linked dominant hypophosphatemic rickets, X-linked vitamin d-resistant rickets, is an X-linked dominant form of rickets (or osteomalacia) that differs from most cases of rickets in that ingestion of vitamin D is relatively ineffective. It can cause bone deformity including short stature and genu varum (bow leggedness). It is associated with a mutation in the PHEX gene sequence (Xp.22) and subsequent inactivity of the PHEX protein. The prevalence of the disease is 1:20000. The leg deformity can be treated with Ilizarov frames and CAOS surgery.
Parastremmatic dwarfism is a rare bone disease that features severe dwarfism, thoracic kyphosis (a type of scoliosis that affects the upper back), a distortion and twisting of the limbs, contractures of the large joints, malformations of the vertebrae and pelvis, and incontinence. The disease was first reported in 1970 by Leonard Langer and associates; they used the term "parastremmatic" from the Greek "parastremma", or "distorted limbs", to describe it. On X-rays, the disease is distinguished by a "flocky" or lace-like appearance to the bones. The disease is congenital, which means it is apparent at birth. It is caused by a mutation in the "TRPV4" gene, located on chromosome 12 in humans. The disease is inherited in an autosomal dominant manner.
Opsismodysplasia can be characterized by a delay in bone maturation, which refers to "bone aging", an expected sequence of developmental changes in the skeleton corresponding to the chronological age of a person. Factors such as gender and ethnicity also play a role in bone age assessment. The only indicator of physical development that can be applied from birth through mature adulthood is bone age. Specifically, the age and maturity of bone can be determined by its state of ossification, the age-related process whereby certain cartilaginous and soft tissue structures are transformed into bone. The condition of epiphyseal plates (growth plates) at the ends of the long bones (which includes those of the arms, hands, legs and feet) is another measurement of bone age. The evaluation of both ossification and the state of growth plates in children is often reached through radiography (X-rays) of the carpals (bones of the hand and wrist). In opsismodysplasia, the process of ossification in long bones can be disrupted by a failure of ossification centers (a center of organization in long bones, where cartilage cells designated to await and undergo ossification gather and align in rows) to form. This was observed in a 16-month-old boy with the disorder, who had no apparent ossification centers in the carpals (bones of the hand and wrist) or tarsals (bones of the foot). This was associated with an absence of ossification in these bones, as well as disfigurement of the hands and feet at age two. The boy also had no ossification occurring in the lower femur (thigh bone) and upper tibia (the shin bone).
Hypertrophic osteoarthropathy (also known as hypertrophic pulmonary osteoarthropathy, Bamberger–Marie syndrome or Osteoarthropathia hypertrophicans) is a medical condition combining clubbing and periostitis of the small hand joints, especially the distal interphalangeal joints and the metacarpophalangeal joints. Distal expansion of the long bones as well as painful, swollen joints and synovial villous proliferation are often seen. The condition may occur alone (primary), or it may be secondary to diseases like lung cancer. It is especially associated with non-small cell lung carcinoma. These patients often get clubbing and increased bone deposition on long bones. Their presenting symptoms are sometimes only clubbing and painful ankles.