Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Necrotic ring spot can be managed through chemical and cultural controls. Cultural control includes the use of ammonium sulfate or other acidifying fertilizers to suppress the pathogen by lowering the pH of the soil to between 6.0 and 6.2. The more acidic soil discourages the activity of "O. korrae" (9) When reducing pH to these levels, additional manganese applications should be undertaken to compensate for lower pH. As of now, there are only two resistant cultivars of bluegrass, which are ‘Riviera’, and ‘Patriot’ (9). One component of their resistance could be that they are tolerant to low temperature, because the grass is more susceptible to the pathogen under colder temperatures(8). In addition, reducing watering inputs and growing turf on well drained soils can lessen disease symptoms.
Many different fungicides are used to control the pathogen, Fenarimol, Propiconazole, Myclobutanil, and Azoxystrobin (8). Historically, Fenarimol and Myclobutanil were predominantly used (14). In a study where diluted pesticides were sprayed throughout infested test plots, Fenarimol was found to be the most effective with a 94.6% reduction of the disease. Myclobutanil also decreased the amount of disease, but only by 37.7% (8). Myclobutanil is generally recognized as a very weakly acting demethylation inhibitor (DMI) fungicide and fenarimol is no longer registered for turf so a number of other DMI fungicides have been employed successfully, including Propiconazole, Tebuconazole, Metconazole and others. Pyraclostrobin and Fluoxastrobin have also been used to control the pathogen.
Calcium deficiency can sometimes be rectified by adding agricultural lime to acid soils, aiming at a pH of 6.5, unless the subject plants specifically prefer acidic soil. Organic matter should be added to the soil to improve its moisture-retaining capacity. However, because of the nature of the disorder (i.e. poor transport of calcium to low transpiring tissues), the problem cannot generally be cured by the addition of calcium to the roots. In some species, the problem can be reduced by prophylactic spraying with calcium chloride of tissues at risk.
Plant damage is difficult to reverse, so corrective action should be taken immediately, supplemental applications of calcium nitrate at 200 ppm nitrogen, for example. Soil pH should be tested, and corrected if needed, because calcium deficiency is often associated with low pH.
Early fruit will generally have the worst systems, with them typically lessening as the season progresses. Preventative measures, such as irrigating prior to especially high temperatures and stable irrigation will minimize the occurrence.
The first strategy of management is the cultural practices for reducing the disease. It includes adequating row and plant spacing that promote better air circulation through the canopy reducing the humidity; preventing excessive nitrogen on fertilization since nitrogen out of balance enhances foliage disease development; keeping the relatively humidity below 85% (suitable on greenhouse), promote air circulation inside the greenhouse, early planting might to reduce the disease severity and seed treatment with hot water (25 minutes at 122 °F or 50 °C).
This disease is hard to control because plants can carry the pathogen prior to showing any symptoms. It is important to be aware of where new plants are being planted so that they aren't exposed to disease.
The most effective method to avoid disease is to plant resistant cultivars that are specific to the location of planting. Some examples of resistant cultivars include Allstar, Cardinal, Delite, Honeoye, Jewel and Tennessee Beauty. Examples of susceptible cultivars that should be avoided include Sparkle, Sunrise, Raritan and Catskill.
Amongst the many different management strategies, cultural control practices play a significant role in prevention or reduction of disease. Some common cultural practices that have been used are as follows. In order to have more successful yields, strawberry plants should be planted in well-drained soil, in an area exposed to lots of available sunlight and air circulation. Presence of weeds may reduce air circulation for strawberry plants and create a shaded, moist environment, which would make the plants more wet and susceptible to disease. Therefore, weed growth needs to be prevented, either by chemical or cultural control methods. Immediately after harvest, any severely infected plants and plant debris should be raked, removed and burned completely to get rid of any remaining spores and reduce inoculum of the pathogen.
At the beginning of renovation, which occurs after harvest, one application of nitrogen fertilizers should be applied to help with canopy regrowth. About 4–6 weeks later, it is generally a good time to apply another application of nitrogen fertilization to the developing strawberry plants. This will allow for the plants to absorb nutrients provided by the fertilizer. However, applying too much nitrogen fertilizer throughout the spring, may result in an abundance of young foliage tissues that could be susceptible to disease.
Fungicides are not necessarily required, however if the strawberry grower decides to use fungicides, they should be applied during early in the spring and immediately after renovation. A fungicide spray schedule may also be put into place. It is recommended to spray in intervals of about 2 weeks. Examples of some recommended fungicides are Bulletin 506-B2, Midwest Commercial Small Fruit and Grape Spray Guide for commercial growers and Bulletin 780, Controlling Disease and Insects in Home Fruit Plantings for backyard home growers.
Fertilisers like ammonium phosphate, calcium ammonium nitrate, urea can be supplied. Foliar spray of urea can be a quick method.
The most widely used potassium fertilizer is potassium chloride (muriate of potash). Other inorganic potassium fertilizers include potassium nitrate, potassium sulfate, and monopotassium phosphate. Potassium-rich treatments suitable for organic farming include feeding with home-made comfrey liquid, adding seaweed meal, composted bracken, and compost rich in decayed banana peels. Wood ash also has high potassium content. Adequate moisture is necessary for effective potassium uptake; low soil water reduces K uptake by plant roots. Liming acidic soils can increase potassium retention in some soils by reducing leaching; practices that increase soil organic matter can also increase potassium retention.
The second strategy of management is the sanitization control in order to reduce the primary inoculum. Remove and destroy (burn) all plants debris after the harvest, scout for disease and rogue infected plants as soon as detected and steam sanitization the greenhouse between crops.
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
The best way to manage SDS is with a resistant variety. One issue is that most resistant varieties are only partially resistant so yield reductions may still occur. Another issue is that the plant needs resistance for SDS and SCN in order to gain true resistance because of their synergistic relationship and most varieties do not have resistance for both. Aside from resistance, the only other ways to control SDS are management practices.
These include:
- Avoid planting in cool, wet conditions
- Plant later when the soil has warmed up
- Try avoiding soil compaction as it creates wet spots in the soil that can increase plant stress and SDS infection rates
- Managing for SCN as this nematode often occurs alongside "F. virguliforme"
- Deep tillage to break up compaction and help the soil warm faster
One common management tactic used in other pathogen management plans is crop rotation. In some cases, disease severity can be reduced but most often it is not effective. This is because of chlamydospores and macroconidia as they can persist in soils for many years.
Fungicides are another common product used to control fungal pathogens. In-furrow applications and seed treatments with fungicides have some effect in decreasing disease instance but in most cases, the timing isn't right and the pathogen can still infect the plants. Foliar applications of fungicides have no effect on disease suppression for SDS because the fungi are found in the soil and mainly the roots of the plants. Most foliar fungicides do not move downward through plants, therefore having no effect on the pathogen.
There are a number of control methods to prevent and reduce the Banana Freckle disease. The paper bag method seems to be the most effective way to gain physical control of the pathogen. The infected leaves are the primary source of spores, and placing a bag over the bananas, once harvested, creates a barrier to prevent inoculum from spreading to the fruit.
Some cultural controls include pruning out infectious plant material, planting in pathogen-free fields, and practicing proper sanitation techniques. In the Philippines, pruning and cutting out patches of infected tissue have prevented the spread of the pathogen in the plant during disease outbreaks. General sanitation practices have also reduced the spread of inoculum. When planters failed to maintain sanitary equipment, seeds, and soil, they witnessed severe fruit infections. The more freckles seen on the leaves of the plant, the more the fruit develops symptoms of the disease. Inversely, less freckles corresponded to less disease.
In addition, multiple fungicides have been seen to reduce Banana Freckle disease. In Hawaii, spraying the leaves and fruit with maneb (1 lb./100 gal water plus 4 oz of sticker-spreader) every 2 weeks or once a month throughout the year has remarkably reduced the spread of inoculum. In Taiwan, spraying fungicides, such as phaltan, orthocide, chlorothalonil, dithiocarbamates, and propiconazole, biweekly have produced effective results against the disease. In the Philippines, chemical controls used against Black or Yellow Sigatoka disease have been helpful. These consist of mancozeb, triazoles, tridemorph, and strobilurin. Mancozeb seems to be the most effective fungicide against Banana Freckle disease in Hawaii and the Philippines . These fungicides do not eliminate the pathogen completely, but they reduce the inoculum levels and eventually reduce yield loss.
Lastly, eradication of infected plants can prevent further infection of other fruit around the area.
Genetic resistance is the preferred disease management strategy because it allows farmers to minimize chemical intervention. Less pesticide and fungicide can encourage biological control agents, reduce production costs, and minimize the chemical residues in fruit. Some genetic varieties of raspberry are better than others for the control of leaf spot. Nova and Jewel Black are both resistant varieties, while Prelude and Honey Queen Golden Raspberry have some resistance, but can be susceptible depending on environmental conditions. Reiville, Canby, Encore and Anne are the most susceptible varieties.
Cultural practices are also important for the management of Raspberry Leaf Spot. Sanitation, which includes the removal of all plant debris and infected canes in the fall, reduces places for the pathogen to overwinter. Pruning the raspberry plants and planting in rows will allow for airflow to dry leaves, creating an uninviting environment for fungi. Furthermore, air flow circulation is important for reducing sporulation and successful infection. Lastly, avoid wounding the plants, as this may provide the fungus with an opportunity to infect.
There are several ways to manage turf melting out. They include both cultural and chemical.
Strawberry foliar nematodes are difficult to manage due to their robust life cycle. While dormant, they are quite difficult to kill, and they remain viable in dry debris for more than one year. Adult nematodes can survive desiccation and lie dormant for several years. Eggs can stay dormant until survival conditions are optimal for growth. Once eggs or nematodes are present in the soil, they are nearly impossible to eradicate because they can move laterally in the soil to escape non-optimal conditions. They are found in most foliar tissue, including the leaves, stems, buds, and crowns, making it difficult to control the disease on the plant itself once it has been infected
Many plant diseases are managed chemically, but due to a ban of nematicides there are currently no nematicides available for any type of foliar nematode. Some insecticides, pesticides, and plant product extracts from plants such as Ficus and Coffee (of which many pesticides and nematicides are neem-based ) can be used to reduce the numbers of strawberry foliar nematode (a reduction of 67-85%), but none of these chemicals can completely eradicate the nematodes once they are present in the soil. These chemicals affect all stages of the life cycle because they target the nervous system. One chemical, ZeroTol, a broad-spectrum fungicide and algaecide, was shown be to 100% potent against nematodes living in a water suspension, but the study does not show how nematodes are affected in soil or outside of a laboratory environment.
An alternative method of control is a hot water treatment, which affects all stages of the life cycle and can be used on whole plants. This treatment has been used for 60 years with some effect in greenhouse plants, but not on a widespread agricultural level. The difficulty in this treatment is that exposure times to hot water and the temperature of the water must be optimized so that the nematodes are killed, but the cultivar remains undamaged. One study, which researched five California strawberry cultivars including Chandler, Douglas, Fern, Pajaro, and Selva, demonstrated that the minimum-maximum exposure times and temperatures that killed the nematodes but did not harm the cultivars were: 20–30 minutes at 44.4⁰C, 10–15 minutes at 46.1⁰C, and 8–10 minutes at 47.7⁰. The study also found that fruit production was more sensitive to the treatment than mere survival of the plant, so the minimum exposure times are recommended when using plants for fruit production, and the maximum time is recommended when using plants for propagation.
One of the best and most practiced forms of management to reduce the local and geographical spread of the disease is sanitation. Removing the infected leaves of the plant can reduce spread in the individual plant, but because the nematode is found in most foliar tissue the nematodes may already be present in other tissues before the leaf symptoms appear. The nematodes can also move on the outside of the plant surface when water is present, so the nematodes can move around the outside surface of the plant and infect new tissues. Therefore, once plants show any signs of infection, they should be removed and destroyed. Reducing or eliminating overhead irrigation can prevent dispersal of the nematode through water splashing, and keeping the foliage dry prevents the nematodes from moving on the outside of the plant. Plants should be placed further apart to allow water to dry quickly after irrigation. In the greenhouse or nursery, soils, containers, and tools should be sterilized on a regular basis, and the floor and storage areas should be free from plant debris.
The most important form of management is prevention of introduction of the nematode to the environment. One should avoid planting infected plants, and it is recommended that new plants (especially in a personal lawn or greenhouse) be planted in an isolated area to monitor the plant for the development of symptoms before transplanting the plant near established plants. This will prevent the established plants from getting infected from a new, infected plant. All symptomatic plants should be destroyed immediately. Dead plant material should also be handled with caution. Vermiform nematodes can survive and reproduce in compost piles of dead plant material by feeding on fungi that are commonly found in compost. As a result, infected plants should be burned and sterilized to prevent the nematodes from infecting soil (which results directly from burying the material), or other plants (from allowing the plant to remain rooted in the soil near other plants as it dies).
There are very few things that can be done to control the spread of bacterial soft rots, and the most effective of them have to do with simply keeping sanitary growing practices.
Storage warehouses should be removed of all plant debris, and the walls and floors disinfected with either formaldehyde or copper sulfate between harvests. Injury to plant tissues should be avoided as much as possible, and the humidity and temperature of the storage facility should be kept low using an adequate ventilation system. These procedures have proven themselves to be very effective in the control of storage soft rot of potato in Wisconsin.
It also helps if plants are planted in well-drained soils, at intervals appropriate for adequate ventilation between plants. Few varieties are resistant to the disease and none are immune, so rotating susceptible plants with non-susceptible ones like cereals is a practice positive to limiting soft rot infection.
The control of specific insect vectors is also a good way of controlling disease spread in the field and in storage. Soil and foliage insecticide treatment helps controls the bugs that frequently cause wounds and disseminate the bacteria.
"F. oxysporum" is a major wilt pathogen of many economically important crop plants. It is a soil-borne pathogen, which can live in the soil for long periods of time, so rotational cropping is not a useful control method. It can also spread through infected dead plant material, so cleaning up at the end of the season is important.
One control method is to improve soil conditions because "F. oxysporum" spreads faster through soils that have high moisture and bad drainage. Other control methods include planting resistant varieties, removing infected plant tissue to prevent overwintering of the disease, using soil and systemic fungicides to eradicate the disease from the soil, flood fallowing, and using clean seeds each year. Applying fungicides depends on the field environment. It is difficult to find a biological control method because research in a greenhouse can have different effects than testing in the field. The best control method found for "F. oxysporum" is planting resistant varieties, although not all have been bred for every forma specialis.
"F. oxysporum" f. sp. "batatas" can be controlled by using clean seed, cleaning up infected leaf and plant material and breeding for resistance. Fungicides can also be used, but are not as effective as the other two because of field conditions during application. Fungicides can be used effectively by dip treating propagation material.
Different races of "F. oxysporum" f. sp. "cubense", Panama disease on banana, can be susceptible, resistant and partially resistant. It can be controlled by breeding for resistance and through eradication and quarantine of the pathogen by improving soil conditions and using clean plant material. Biological control can work using antagonists. Systemic and soil fungicides can also be used.
The main control method for "F. oxysporum" f. sp. "lycopersici", vascular wilt on tomato, is resistance. Other effective control methods are fumigating the infected soil and raising the soil pH to 6.5-7.
The most effective way to control "F. oxysporum" f. sp. "melonis" is to graft a susceptible variety of melon to a resistant root-stock. Resistant cultivars, liming the soil to change soil pH to 6-7, and reducing soil nitrogen levels also help control "F. oxysporum" f. sp. "melonis".
The fungus "Trichoderma viride" is a proven biocontrol agent to control this disease in an environment friendly way.
Boric acid (16.5%boron), borax (11.3% boron) or SoluBor (20.5% boron) can be applied to soils to correct boron deficiency. Typical applications of actual boron are about 1.1 kg/hectare or 1.0 lb/acre but optimum levels of boron vary with plant type. Borax, Boric Acid or Solubor can be dissolved in water and sprayed or applied to soil as a dust. Excess boron is toxic to plants so care must be taken to ensure correct application rate and even coverage. Leaves of many plants are damaged by boron; therefore, when in doubt, only apply to soil. Application of boron may not correct boron deficiency in alkaline soils because even with the addition of boron, it may remain unavailable for plant absorption. Continued application of boron may be necessary in soils that are susceptible to leaching such as sandy soils. Flushing soils containing toxic levels of boron with water can remove the boron through leaching.
Bacterial leaf streak of wheat is not easily prevented, but can be controlled with clean seed and resistance. Some foliar products, such as pesticides and antibiotic compounds, have been tested for effectiveness, but have proven to have insignificant outcomes on the bacterial pathogen.
Using clean seed, with little infection, has yielded effective results for researchers and producers. The pathogen, being seed-borne, can be controlled with the elimination of contaminated seed, however, clean seed is not always a sure solution. Because the pathogen may still live in the soil, the use of clean seed is only effective if both the soil and seed are free of the pathogen. Currently, there are no successful seed treatments available for producers to apply to wheat seed for the pathogen.
Variety resistance is another option for control of the disease. Using cultivars such as Blade, Cromwell, Faller, Howard or Knudson, which are resistant to BLS may reduce the impact of the disease and potentially break the disease cycle. Avoiding susceptible cultivars such as Hat Trick, Kelby, and Samson may also reduce the presence of the disease and reduce the amount of bacterial residue in the soil. Using integrated pest management techniques such as tillage to turn over the soil and bury the infection as well as rotating crops may assist with disease management, but are not a definitive control methods. Depending on conditions, the bacteria may survive for up to 81 months. Because the bacteria is moisture driven, irrigation may also increase the risks of BLS infection.
Correction and prevention of phosphorus deficiency typically involves increasing the levels of available phosphorus into the soil. Planters introduce more phosphorus into the soil with bone meal, rock phosphate,manure, and phosphate-fertilizers. The introduction of these compounds into the soil however does not ensure the alleviation of phosphorus deficiency. There must be phosphorus in the soil, but the phosphorus must also be absorbed by the plant. The uptake of phosphorus is limited by the chemical form in which the phosphorus is available in the soil. A large percentage of phosphorus in soil is present in chemical compounds that plants are incapable of absorbing. Phosphorus must be present in soil in specific chemical arrangements to be usable as plant nutrients. Facilitation of usable phosphorus in soil can be optimized by maintaining soil within a specified pH range. Soil acidity, measured on the pH scale, partially dictates what chemical arrangements that phosphorus forms. Between pH 6 and 7, phosphorus makes the fewest number of bonds which render the nutrient unusable to plants. At this range of acidity the likeliness of phosphorus uptake is increased and the likeliness of phosphorus deficiency is decreased. Another component in the prevention and treatment of phosphorus is the plant’s disposition to absorb nutrients. Plant species and different plants within in the same species react differently to low levels of phosphorus in soil. Greater expansion of root systems generally correlate to greater nutrient uptake. Plants within a species that have larger roots are genetically advantaged and less prone to phosphorus deficiency. These plants can be cultivated and bred as a long term phosphorus deficiency prevention method. In conjunction to root size, other genetic root adaptations to low phosphorus conditions such as mycorrhizal symbioses have been found to increase nutrient intake. These biological adaptations to roots work to maintain the levels of vital nutrients. In larger commercial agriculture settings, variation of plants to adopt these desirable phosphorus intake adaptations may be a long-term phosphorus deficiency correction method.
Various methods are applied.
- The most effective method is to plant peach trees against a house wall under an overhanging roof, possibly covered by a mat during the winter, to keep winter rain from the buds before they burst (and incidentally to delay blossoming until spring frosts are over), until the temperature exceeds in the spring, deactivating the fungus.
- Commercially, spraying the leaves with fungicides is the most common control method. The toxicity of these fungicides means they are not legally available to noncommercial growers in some countries. Spraying should be done in the winter well before budding. If trees are not sprayed early enough, treatment is ineffective. Copper-based mixtures (such as Bordeaux mixture) and lime sulfurs are two fungicides commonly used.
- Peach cultivars can be planted which show some resistance to peach leaf curl, or at least regenerate rapidly, such as Peach 'Benedicte'. No similarly resistant nectarine cultivar is yet known.
If a plant appears to have signs of leaf curl in a particular year, the disease will take its course, but precautions can be taken to sustain the tree or maximize crop yield: for example, treating with nitrogen and excess water to minimize stress on the tree; applying greasebands around the trunk to protect from insect infestation; and thinning the fruit. It is unclear whether removal of infected leaves from the tree is beneficial. Removing the infected leaves and fruit after they fall to the ground is sometimes also suggested but superfluous if, in the following winter, fungicides or rain protection are applied.
The bacteria can survive in the rhizosphere of other crops such as tomato, carrots, sweet potato, radish, and squash as well as weed plants like lupin and pigweed, so it is very hard to get rid of it completely. When it is known that the bacterium is present in the soil, planting resistant varieties can be the best defense against the disease. Many available beet cultivars are resistant to "Pectobacterium carotovorum" subsp. "betavasculorum", and some examples are provided in the corresponding table. A comprehensive list is maintained by the USDA on the Germplasm Resources Information Network.
Even though some genes associated with root defense response have been identified, the specific mechanism of resistance is unknown, and it is currently being researched.
General biocides such as copper, Junction, or ZeroTol offer a potential solution to bacterial wilt of turf grass, however such chemical control ages must be applied after every mowing which may be economically impractical and ultimately phytotoxic. If bacterial wilt is present of the golf course, the best option may be to designate a mower for use on infected greens only in order to prevent the spread of the pathogen to other greens. Other viable methods include simply limiting the number of wounds the plant incurs, thereby limiting entry sites for the pathogen. A simple example would be less frequent mowing. It has also been proven that the disease is most devastating in grass cut to a length of between 1/8 and 3/16 of an inch, but less so in grass over 1/4 of an inch in length or longer, which presents an additional argument for limiting mowing. Another example is limiting sand topdressing as this is also a very abrasive technique which can create small wounds which allow entry of bacteria into the plant.
A major factor complicating the control of Xanthomonas campestris pv. graminis is weather. While it is not possible to control the weather per se, a study found great decreases in pathogen efficacy at temperatures below 20 °C, suggesting that cooling measures may be effective in combating this pathogen.
Ideally, resistant strains of the host plant should be used to control such a plant pathogen, however no resistant cultivars of turf grass have been identified to date. While no completely resistant cultivars exist, golf course owners can find solace in the fact that certain cultivars such as Penncross and Penneagle are more resistant to bacterial wilt and may thus reduce the need for frequent chemical applications and other cultural controls. Researchers are making gains towards the identification of resistant cultivars as evidenced by the finding that variation in genetic linkage groups 1, 4, and 6 accounted for over 43% of resistance among Italian rye grass.
A 1987 study found evidence of a possible biocontrol strategy for bacterial wilt of turf grass. The researchers found that antiserum to Pseudomonas fluorescens or Erwinia herbicola from hosts which have survived infections by the corresponding pathogens is capable of reducing wilt symptoms in turf grass caused by Xanthomonas campestris pv. graminis. The researchers did note, however, that while it is important to ensure the presence of a higher number of competing bacterial cells in order to reduce symptoms, one should take care to avoid over-infecting the host with a new bacterial pathogen.
Further gains towards host resistance were made in 2001 when researchers found that inoculation of meadow fescue during breeding with a single aggressive strain of the bacterial wilt pathogen greatly increased resistance in offspring, thereby demonstrating the potential of selective breeding to reduce bacterial wilt pathogenesis on turf and rye grasses.
Because "O. sericea" is both frequently encountered and relatively palatable to livestock, it is an important cause of economic losses in livestock production. Keeping livestock away from locoweed infested pasture in spring and fall when grass and other forbs are not actively growing is recommended. Another suggested remedy is to provide palatable supplemental nutrients if animals are to be kept in infested pasture. These remedies take into account livestock preference for locoweed during seasons when grass is dry and not very nutritious. Conditioned food aversion has been used experimentally to discourage livestock from eating it. In horses, a small study has shown promising results using lithium chloride as the aversive agent.
Once boron has been absorbed by the plant and incorporated into the various structures that require boron, it is unable to disassemble these structures and re-transport boron through the plant resulting in boron being a non-mobile nutrient. Due to translocation difficulties the youngest leaves often show deficiency symptoms first.
Golf courses affect the United States economy with about 18 billion dollars annually. Turf melting out is an important disease economically for golf course superintendents. When turfgrass quality is affected on a golf course, the course has a potential to lose golfers, in turn, losing money. After a golf course has an outbreak of turf melting out, the damage needs to be assessed and the turf needs to be replaced. Mending these damaged areas cost money from the fungicide applications to rid the area of the disease to the replacement of turf. Simple cultural controls help reduce the risk of this disease, but when the methods are not used, it can be costly.
Sugarcane smut or "Ustilago scitaminea Sydow" is caused by the fungus "Sporisorium scitamineum"; smut was previously known as "Ustilago scitaminea". The smut 'whip' is a curved black structure which emerges from the leaf whorl, and which aids in the spreading of the disease. Sugarcane smut causes significant losses to the economic value of a sugarcane crop. Sugarcane smut has recently been found in the eastern seaboard areas of Australia, one of the world's highest-yielding sugar areas.
For the sugarcane crop to be infected by the disease, large spore concentrations are needed. The fungi uses its "smut-whip" to ensure that the disease is spread to other plants, which usually occurs over a time period of three months. As the inoculum is spread, the younger sugarcane buds just coming out of the soil will be the most susceptible. Because water is necessary for spore germination, irrigation has been shown to be a factor in spreading the disease. Therefore, special precautions need to be taken during irrigation to prevent spreading of the smut.
Another way to prevent the disease from occurring in the sugarcane is to use fungicide. This can be done by either pre-plant soaking or post-plant spraying with the specific fungicide. Pre-plant soaking has been proven to give the best results in preventing the disease, but post-plant spraying is a practical option for large sugarcane cultivations.