Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The following may provide relief:
- Cold compresses
- Pad and bandage with antibiotics drops for 24 hours, heals most of the cases
- anaesthetic drops should not be used
- Oral analgesics if pain is intolerable
- Single dose of tranquilizers
Treatment can occur in two ways: treating symptoms and treating the deficiency. Treatment of symptoms usually includes the use of artificial tears in the form of eye drops, increasing the humidity of the environment with humidifiers, and wearing wraparound glasses when outdoors. Treatment of the deficiency can be accomplished with a Vitamin A or multivitamin supplement or by eating foods rich in Vitamin A. Treatment with supplements and/or diet can be successful until the disease progresses as far as corneal ulceration, at which point only an extreme surgery can offer a chance of returning sight.
The pain may be temporarily alleviated with anaesthetic eye drops for the examination; however, they are not used for continued treatment, as anaesthesia of the eye interferes with corneal healing, and may lead to corneal ulceration and even loss of the eye. Cool, wet compresses over the eyes and artificial tears may help local symptoms when the feeling returns. Nonsteroidal anti-inflammatory drug (NSAID) eyedrops are widely used to lessen inflammation and eye pain, but have not been proven in rigorous trials. Systemic (oral) pain medication is given if discomfort is severe. Healing is usually rapid (24–72 hours) if the injury source is removed. Further injury should be avoided by isolation in a dark room, removing contact lenses, not rubbing the eyes, and wearing sunglasses until the symptoms improve.
Prophylaxis consists of periodic administration of Vitamin A supplements. WHO recommended schedule, which is universally recommended is as follows:
- Infants 6–12 months old and any older children weighing less than 8 kg - 100,000 IU orally every 3–6 months
- Children over 1 year and under 6 years of age - 200,000 IU orally every 6 months
- Infants less than 6 months old, who are not being breastfed - 50,000 IU orally should be given before they attain the age of 6 months
The best treatment for light sensitivity is to address the underlying cause. Once the triggering factor is treated, photophobia disappears in many but not all cases.
People with photophobia will avert their eyes from direct light, such as sunlight and room lights. They may seek the shelter of a dark room. They may wear sunglasses designed to filter peripheral light and wide-brimmed sun hats.
Wearing sunglasses indoors can make symptoms worse over time as it will dark-adapt the retina which aggravates sensitivity to light. Indoor photophobia symptoms may be relieved with the use of precision tinted lenses which block the green-to-blue end of the light spectrum without blurring or impeding vision.
A paper by Stringham and Hammond, published in the "Journal of Food Science", reviews studies of effects of consuming Lutein and Zeaxanthin on visual performance, and notes a decrease in sensitivity to glare.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.
The first line of management for chemical injuries is usually copious irrigation of the eye with an isotonic saline or sterile water. In the cases of chemical burns, one should not try to buffer the solution, but instead it with copious flushing.
During an acute flare-up, therapy is targeted at reducing the inflammation present, and dilating the pupil. Mydriasis is important, as pupillary constriction is the primary reason for pain. Anti-inflammatory therapy is usually given both systemically, often in the form of flunixin meglumine, and topically, as prednisolone acetate. The mydriatic of choice is atropine. In the periods between acute attacks, no therapy has been shown to be beneficial.
Crooke’s glass is a prophylactic aid consisting of a spectacle lens combined with metallic oxides to absorb ultraviolet or infrared rays and should be used by those who are prone to exposure e.g. Welding workers, cinema operators.
In cases of eyelid lace, sutures may be a part of appropriate management by the primary care physician so long as the laceration does not threaten the canaliculi, is not deep, and does not affect the lid margins.
In very severe cases of necrotizing scleritis, eye surgery must be performed to repair damaged corneal tissue in the eye and preserve the patient's vision. For less severe cases, nonsteroidal anti-inflammatory drugs, such as ibuprofen, are prescribed for pain relief. Scleritis itself is treated with an oral medication containing corticosteroids and an eye solution. In some cases, antibiotics are prescribed. Simply using eye drops will not treat scleritis. In more aggressive cases of scleritis, chemotherapy (such as systemic immunosuppressive therapy with such drugs as cyclophosphamide or azathioprine) may be used to treat the disease. If not treated, scleritis can cause blindness.
Photophobia may also affect patients' socioeconomic status by limiting their career choices, since many workplaces require bright lights for safety or to accommodate the work being done. Sufferers may be shut out of a wide range of both skilled and unskilled jobs, such as in warehouses, offices, workshops, classrooms, supermarkets and storage spaces. Some photophobes are only able to work night shifts, which reduces their prospects for finding work.
Horses that suffer from this disease can never be considered cured, although they can be managed by careful use of the therapy described above, and fast detection of new flare-ups. If the disease is not properly treated, it will eventually lead to blindness.
It is extremely important to see an ophthalmologist regularly. Research indicates that supplements slow the disease and lessen the symptoms. Supplements such as Vitamin A, lutein, omega-3 fatty acid DHA have shown to help this disease. While supplements may help lessen the symptoms, retinitis itself is not curable. Additionally, devices such as low-vision magnifiers can be used to aid vision in patients suffering from despaired vision due to retinitis. Rehabilitation services may also aid the patient so that patients may use their vision in a more effective manner. Lastly, it is advisable to wear sunglasses even on gloomy days to protect your eyes from any ultraviolet light.
Whether blindness is treatable depends upon the cause. Surgical intervention can be performed in PCG which is childhood glaucoma, usually starting early in childhood. Primary congenital glaucoma is caused by an abnormal drainage of the eye. However, surgical intervention is yet to prove effective.
Current research on Retinitis includes studying stem cells, medications, gene therapies, and transplants to help treat/cure this condition. A study including patients with Retinitis was conducted by using gene therapy. Results from this study indicated that patients experienced some restored vision. Such studies indicate that the future may allow treatment of Retinitis by inserting healthy genes in the retina to cure this disease.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Cataract removal can be performed at any stage and no longer requires ripening of the lens. Surgery is usually 'outpatient' and performed using local anesthesia. About 9 of 10 patients can achieve a corrected vision of 20/40 or better after surgery.
Several recent evaluations found that cataract surgery can meet expectations only when significant functional impairment due to cataracts exists before surgery. Visual function estimates such as VF-14 have been found to give more realistic estimates than visual acuity testing alone. In some developed countries, a trend to overuse cataract surgery has been noted, which may lead to disappointing results.
Phacoemulsification is the most widely used cataract surgery in the developed world. This procedure uses ultrasonic energy to emulsify the cataract lens. Phacoemulsification typically comprises six steps:
- Anaesthetic – The eye is numbed with either a subtenon injection around the eye (see: retrobulbar block) or topical anesthetic eye drops. The former also provides paralysis of the eye muscles.
- Corneal incision – Two cuts are made at the margin of the clear cornea to allow insertion of instruments into the eye.
- Capsulorhexis – A needle or small pair of forceps is used to create a circular hole in the capsule in which the lens sits.
- Phacoemulsification – A handheld ultrasonic probe is used to break up and emulsify the lens into liquid using the energy of ultrasound waves. The resulting 'emulsion' is sucked away.
- Irrigation and aspiration – The cortex, which is the soft outer layer of the cataract, is aspirated or sucked away. Fluid removed is continually replaced with a saline solution to prevent collapse of the structure of the anterior chamber (the front part of the eye).
- Lens insertion – A plastic, foldable lens is inserted into the capsular bag that formerly contained the natural lens. Some surgeons also inject an antibiotic into the eye to reduce the risk of infection. The final step is to inject salt water into the corneal wounds to cause the area to swell and seal the incision.
Extracapsular cataract extraction (ECCE) consists of removing the lens manually, but leaving the majority of the capsule intact. The lens is expressed through a 10- to 12-mm incision which is closed with sutures at the end of surgery. ECCE is less frequently performed than phacoemulsification, but can be useful when dealing with very hard cataracts or other situations where emulsification is problematic. Manual small incision cataract surgery (MSICS) has evolved from ECCE. In MSICS, the lens is removed through a self-sealing scleral tunnel wound in the sclera which, ideally, is watertight and does not require suturing. Although "small", the incision is still markedly larger than the portal in phacoemulsion. This surgery is increasingly popular in the developing world where access to phacoemulsification is still limited.
Intracapsular cataract extraction (ICCE) is rarely performed. The lens and surrounding capsule are removed in one piece through a large incision while pressure is applied to the vitreous membrane. The surgery has a high rate of complications.
There is no established treatment for visual snow. It is difficult to resolve visual snow with treatment, but it is possible to reduce symptoms and improve quality of life through treatment.
Medications that may be used include lamotrigine, acetazolamide, or verapamil. But these do not always result in benefits.
Braille is a universal way to learn how to read and write, for the blind. A refreshable braille display is an assistive learning device that can help such children in school. Schools for the blind are a form of management, however the limitations of using studies done in such schools has been recognized. Children that are enrolled presently, usually, had developed blindness 5 or more years prior to enrollment, consequently not reflecting current possible causes. About 66% of children with visual impairment also have one other disability (comorbidity), be it, intellectual disabilities, cerebral palsy, or hearing loss. Eye care/screening for children within primary health care is important as catching ocular disease issues can lead to better outcomes.
There is generally no treatment to cure achromatopsia. However, dark red or plum colored filters are very helpful in controlling light sensitivity.
Since 2003, there is a cybernetic device called eyeborg that allows people to perceive color through sound waves. Achromatopsic artist Neil Harbisson was the first to use such a device in early 2004, the eyeborg allowed him to start painting in color by memorizing the sound of each color.
Moreover, there is some research on gene therapy for animals with achromatopsia, with positive results on mice and young dogs, but less effectiveness on older dogs. However, no experiments have been made on humans. There are many challenges to conducting gene therapy on humans. See Gene therapy for color blindness for more details about it.
Photokeratitis can be prevented by using sunglasses or eye protection that transmits 5–10% of visible light and absorbs almost all UV rays. Additionally, these glasses should have large lenses and side shields to avoid incidental light exposure. Sunglasses should always be worn, even when the sky is overcast, as UV rays can pass through clouds.
The Inuit, Yupik, and other Arctic peoples carved snow goggles from materials such as driftwood or caribou antlers to help prevent snow blindness. Curved to fit the user's face with a large groove cut in the back to allow for the nose, the goggles allowed in a small amount of light through a long thin slit cut along their length. The goggles were held to the head by a cord made of caribou sinew.
In the event of missing sunglass lenses, emergency lenses can be made by cutting slits in dark fabric or tape folded back onto itself. The "SAS Survival Guide" recommends blackening the skin underneath the eyes with charcoal (as the ancient Egyptians did) to avoid any further reflection.
If the diagnostic workup reveals a systemic disease process, directed therapies to treat that underlying cause should be initiated. If the amaurosis fugax is caused by an atherosclerotic lesion, aspirin is indicated, and a carotid endarterectomy considered based on the location and grade of the stenosis. Generally, if the carotid artery is still patent, the greater the stenosis, the greater the indication for endarterectomy. "Amaurosis fugax appears to be a particularly favorable indication for carotid endarterectomy. Left untreated, this event carries a high risk of stroke; after carotid endarterectomy, which has a low operative risk, there is a very low postoperative stroke rate." However, the rate of subsequent stroke after amaurosis is significantly less than after a hemispheric TIA, therefore there remains debate as to the precise indications for which a carotid endarterectomy should be performed. If the full diagnostic workup is completely normal, patient observation is recommended.
It may be treated with triamcinolone in some cases. However, in general, there are no treatments for Purtscher's retinopathy. If it is caused by a systemic disease or emboli, then those conditions should be treated.
There is generally no treatment to cure color deficiencies. ″The American Optometric Association reports a contact lens on one eye can increase the ability to differentiate between colors, though nothing can make you truly see the deficient color.″