Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Inferior vena cava filters (IVC filters) are used on the presumption that they reduce PE, although their effectiveness and safety profile are not well established. In general, they are only recommended in some high risk scenarios. The ACCP recommended them for those with a contraindication to anticoagulant treatment but not in addition to anticoagulation, unless an individual with an IVC filter but without a risk for bleeding develops acute proximal DVT. In this case, both anticoagulation and an IVC filter are suggested. NICE recommends caval filters in settings where someone with an acute proximal DVT or PE cannot receive anticoagulation, and that the filter is removed when anticoagulation can be safely started. While IVC filters themselves are associated with a long-term risk of DVT, they are not reason enough to maintain extended anticoagulation.
Thrombolysis is the administration of an enzyme (intravenous or directly into the affected vein through a catheter), which acts to enzymatically break up clots. This may reduce the risk of post-thrombotic syndrome by a third, and possibly reduce the risk of leg ulcers, but is associated with an increased risk of bleeding. The ACCP currently suggests anticoagulation rather than thrombolysis, but patients may choose thrombolysis if prevention of post-thrombotic syndrome outweighs concerns over the complexity, bleeding risk, and cost of the procedure. NICE recommends that thrombolysis is considered in those who have had symptoms for less than two weeks, are normally well, have a good life expectancy and a low risk of bleeding.
A mechanical thrombectomy device can remove venous clots, although the ACCP considers it an option only when the following conditions apply: "iliofemoral DVT, symptoms for < 7 days (criterion used in the single randomized trial), good functional status, life expectancy of ≥ 1 year, and both resources and expertise are available." Anticoagulation alone is suggested over thrombectomy.
The ACCP recommended initial home treatment instead of hospital treatment for those with acute leg DVT. This applies as long as individuals feel ready for it, and those with severe leg symptoms or comorbidities would not qualify. An appropriate home environment is expected: one that can provide a quick return to the hospital if necessary, support from family or friends, and phone access.
In addition to anticoagulation, the ACCP suggested graduated compression stockings—which apply higher pressure (30–40 mm Hg) at the ankles and a lower pressure around the knees—for those with symptomatic DVT. Use should begin as soon as possible after anticoagulation. Evidence however does not support that these stockings reduce the risk of post-thrombotic syndrome nor do they indicate a reduction in recurrent VTE. Use is suggested for two years, though inconvenience and discomfort can reduce compliance. Walking is also suggested for those without severe pain or edema.
Unless a person has medical problems preventing movement, after a person starts anti-coagulation therapy bed rest should not be used to treat acute deep vein thrombosis. There are clinical benefits associated with walking and no evidence that walking is harmful, but people with DVT are harmed by bed rest except when it is medically necessary.
Instead of anticoagulation, a follow-up imaging test (typically ultrasound) about one-week post-diagnosis is an option for those with an acute isolated distal DVT without a high risk for extension; if the clot does not grow, the ACCP does not recommend anticoagulation. This technique can benefit those at a high risk for bleeding. Patients may choose anticoagulation over serial imaging, however, to avoid the inconvenience of another scan if concerns about the risk of bleeding are insignificant. When applied to symptomatic patients with a negative initial ultrasound result, serial testing is inefficient and not cost effective.
Phlegmasia alba dolens (also colloquially known as milk leg or white leg) is part of a spectrum of diseases related to deep vein thrombosis. Historically, it was commonly seen during pregnancy and in mothers who have just given birth. In cases of pregnancy, it is most often seen during the third trimester, resulting from a compression of the left common iliac vein against the pelvic rim by the enlarged uterus. Today, this disease is most commonly (40% of the time) related to some form of underlying malignancy. Hypercoagulability (a propensity to clot formation) is a well-known state that occurs in many cancer states. The incidence of this disease is not well reported.
The disease presumably begins with a deep vein thrombosis that progresses to total occlusion of the deep venous system. It is at this stage that it is called phlegmasia alba dolens. It is a sudden (acute) process. The leg, then, must rely on the superficial venous system for drainage. The superficial system is not adequate to handle the large volume of blood being delivered to the leg via the arterial system. The result is edema, pain and a white appearance ("alba") of the leg.
The next step in the disease progression is occlusion of the superficial venous system, thereby preventing all venous outflow from the extremity. At this stage it is called phlegmasia cerulea dolens. The leg becomes more swollen and increasingly more painful. Additionally, the edema and loss of venous outflow impedes the arterial inflow. Ischemia with progression to gangrene are potential consequences. Phlegmasia alba dolens is distinguished, clinically, from phlegmasia cerulea dolens in that there is no ischemia.
Phlegmasia cerulea dolens (literally: "painful blue edema") is an uncommon severe form of deep venous thrombosis which results from extensive thrombotic occlusion (blockage by a thrombus) of the major and the collateral veins of an extremity. It is characterized by sudden severe pain, swelling, cyanosis and edema of the affected limb. There is a high risk of massive pulmonary embolism, even under anticoagulation. Foot gangrene may also occur. An underlying malignancy is found in 50% of cases. Usually, it occurs in those afflicted by a life-threatening illness.
This phenomenon was discovered by Jonathan Towne, a vascular surgeon in Milwaukee, who was also the first to report the "white clot syndrome" (now called heparin induced thrombocytopenia [HIT]). Two of their HIT patients developed phlegmasia cerulea dolens that went on to become gangrenous.
Treatment by Catheter directed thrombolytic therapy.
The lesions are harmless, and no treatment is indicated beyond reassurance, unless the person requests it. The most common and simple treatment is construction of a specially made acrylic prosthesis that covers the biting surfaces of the teeth and protects the cheek, tongue and labial mucosa (an occlusal splint). This is either employed in the short term as a habit breaking intention, or more permanently (e.g. wearing the prosthesis each night during sleep). Psychological intervention is also reported, but does not appear to be beneficial.
No treatment is required and the patches in time will settle.
The redness, scale and itch if present may be managed with simple emollients and sometimes hydrocortisone, a weak steroid, is also used.
As the patches of pityriasis alba do not darken normally in sunlight, effective sun protection helps minimise the discrepancy in colouration against the surrounding normal skin. Cosmetic camouflage may be required.
Tacrolimus has been reported as speeding resolution.
In exceptionally severe cases PUVA therapy may be considered.
Some malignancies, especially gliomas (25%), as well as adenocarcinomas of the pancreas and lung, are associated with hypercoagulability (the tendency to form blood clots) for reasons that are incompletely understood, but may be related to factors secreted by the tumors, in particular a circulating pool of cell-derived tissue factor-containing microvesicles. Some adenocarcinomas secrete mucin that can interact with selectin found on platelets, thereby causing small clots to form.
In patients with malignancy-associated hypercoagulable states, the blood may spontaneously form clots in the portal vessels, the deep veins of the extremities (such as the leg), or the superficial veins anywhere on the body. These clots present as visibly swollen blood vessels (thrombophlebitis), especially the veins, or as intermittent pain in the affected areas.
Regurgitation and heartburn in pregnancy are caused by relaxation of the lower esophageal sphincter (LES) and increased transit time in the stomach (normal in pregnancy), as well as by increased intraabdominal pressure, caused by the enlarging uterus.
Regurgitation and heartburn in pregnancy can be at least alleviated by eating multiple small meals a day, avoiding eating within three hours of going to bed, and sitting up straight when eating.
If diet and lifestyle changes are not enough, antacids and alginates may be required to control indigestion, particularly if the symptoms are mild. If these, in turn, are not enough, proton pump inhibitors may be used.
If more severe, it may be diagnosed as gastroesophageal reflux disease (GERD).
Dilation of veins in legs caused by relaxation of smooth muscle and increased intravascular pressure due to fluid volume increase. Treatment involves elevation of the legs and pressure stockings to relieve swelling along with warm sitz baths to decrease pain. There is a small amount of evidence that rutosides (a herbal remedy) may relieve symptoms of varicose veins in late pregnancy but it is not yet known if rutosides are safe to take in pregnancy.
Risk factors include obesity, lengthy standing or sitting, constrictive clothing and constipation and bearing down with bowel movements
The Trousseau sign of malignancy or Trousseau's syndrome is a medical sign involving episodes of vessel inflammation due to blood clot (thrombophlebitis) which are recurrent or appearing in different locations over time (thrombophlebitis migrans or migratory thrombophlebitis). The location of the clot is tender and the clot can be felt as a nodule under the skin. Trousseau's syndrome is a rare variant of venous thromboembolism (VTE) that is characterized by recurrent, migratory thrombosis in superficial veins and in uncommon sites, such as the chest wall and arms. This syndrome is particularly associated with pancreatic, gastric and lung cancer and Trousseau's syndrome can be an early sign of cancer
, sometimes appearing months to years before the tumor would be otherwise detected. Heparin therapy is recommended to prevent future clots. The Trousseau sign of malignancy should not be confused with the Trousseau sign of latent tetany caused by hypocalcemia.
Medication is the main method of managing pain in TMD, mostly because there is little if any evidence of the effectiveness of surgical or dental interventions. Many drugs have been used to treat TMD pain, such as analgesics (pain killers), benzodiazepines (e.g. clonazepam, prazepam, diazepam), anticonvulsants (e.g. gabapentin), muscle relaxants (e.g. cyclobenzaprine), and others. Analgesics that have been studied in TMD include non-steroidal anti-inflammatory drugs (e.g. piroxicam, diclofenac, naproxen) and cyclo-oxygenase-2 inhibitors (e.g. celecoxib). Topical methyl salicylate and topical capsaicin have also been used. Other drugs that have been described for use in TMD include glucosamine hydrochloride/chondroitin sulphate and propranolol. Despite many randomized control trials being conducted on these commonly used medications for TMD a systematic review carried out in 2010 concluded that there was insufficient evidence to support or not to support the use of these drugs in TMD. Low-doses of anti-muscarinic tricyclic antidepressants such as amitriptyline, or nortriptyline have also been described. In a subset of people with TMD who are not helped by either noninvasive and invasive treatments, long term use of opiate analgesics has been suggested, although these drugs carry a risk of drug dependence and other side effects. Examples include morphine, fentanyl, oxycodone, tramadol, hydrocodone, and methadone.
Botulinum toxin solution ("Botox") is sometimes used to treat TMD. Injection of botox into the lateral pterygoid muscle has been investigated in multiple randomized control trials, and there is evidence that it is of benefit in TMD. It is theorized that spasm of lateral pterygoid causes anterior disc displacement. Botulinum toxin causes temporary muscular paralysis by inhibiting acetylcholine release at the neuromuscular junction. The effects usually last for a period of months before they wear off. Complications include the creation of a "fixed" expression due to diffusion of the solution and subsequent involvement of the muscles of facial expression, which lasts until the effects of the botox wear off. Injections of local anesthetic, sometimes combined with steroids, into the muscles (e.g. the temoralis muscle or its tendon) are also sometimes used. Local anesthetics may provide temporary pain relief, and steroids inhibit pro-inflammatory cytokines. Steroids and other medications are sometimes injected directly into the joint (See Intra-articular injections).
A systematic review of the evidence found that exercise may or may not reduce the size of the gap in pregnant or postpartum women. The authors looked at 8 studies totaling 336 women and concluded, “Due to the low number and quality of included articles, there is insufficient evidence to recommend that exercise may help to prevent or reduce DRAM” also stating that "non-specific exercise may or may not help to prevent or reduce DRAM during the ante- and postnatal periods."
Surgical removal of the lesion is the first choice of treatment for many clinicians. However, the efficacy of this treatment modality cannot be assessed due to insufficient available evidence. This can be carried out by traditional surgical excision with a scalpel, with lasers, or with eletrocautery or cryotherapy. Often if biopsy demonstrates moderate or severe dysplasia then the decision to excise them is taken more readily. Sometimes white patches are too large to remove completely and instead they are monitored closely. Even if the lesion is completely removed, long term review is still usually indicated since leukoplakia can recur, especially if predisposing factors such as smoking are not stopped.
Many different topical and systemic medications have been studied, including anti-inflammatories, antimycotics (target Candida species), carotenoids (precursors to vitamin A, e.g. beta carotene), retinoids (drugs similar to vitamin A), and cytotoxics, but none have evidence that they prevent malignant transformation in an area of leukoplakia.Vitamins C and E have also been studied with regards a therapy for leukoplakia. Some of this research is carried out based upon the hypothesis that antioxidant nutrients, vitamins and cell growth suppressor proteins (e.g. p53) are antagonistic to oncogenesis. High doses of retinoids may cause toxic effects. Other treatments that have been studied include photodynamic therapy.
Acupuncture is sometimes used for TMD. There is limited evidence that acupuncture is an effective symptomatic treatment for TMD. A short term reduction in muscular pain of muscular origin can usually be observed after acupuncture in TMD, and this is more than is seen with placebo. There are no reported adverse events of acupuncture when used for TMD, and some suggest that acupuncture is best employed as an adjuvent to other treatments in TMD. However, some suggest that acupuncture may be no more effective than sham acupuncture, that many of the studies investigating acupuncture and TMD suffer from significant risk of bias, and that the long term efficacy of acupuncture for TMD is unknown.
Keratosis pilaris is medically harmless, but many individuals may seek treatment as the condition can cause emotional distress. Topical creams and lotions are currently the most commonly used treatment for keratosis pilaris, specifically those consisting of moisturizing or keratolytic treatments, including urea, lactic acid, glycolic acid, salicylic acid, vitamin D, or topical retinoids such as tretinoin. Corticosteroid creams can also be used as a treatment for KP. Improvement of the skin often takes months and the bumps are likely to return. Limiting time in the shower and using gentle exfoliation to unplug pores can help. Many products are available that apply exfoliation and alpha or beta hydroxy acids.
Some cases of keratosis pilaris have been successfully treated with laser therapy, which involves passing intense bursts of light into targeted areas of the skin. Depending on the body's response to the treatment, multiple sessions over the course of a few months may be necessary.
Treatments for tinea versicolor include:
- Topical antifungal medications containing selenium sulfide are often recommended. Ketoconazole (Nizoral ointment and shampoo) is another treatment. It is normally applied to dry skin and washed off after 10 minutes, repeated daily for two weeks. Ciclopirox (Ciclopirox olamine) is an alternative treatment to ketoconazole, as it suppresses growth of the yeast "Malassezia furfur". Initial results show similar efficacy to ketoconazole with a relative increase in subjective symptom relief due to its inherent anti-inflammatory properties. Other topical antifungal agents such as clotrimazole, miconazole, terbinafine, or zinc pyrithione can lessen symptoms in some patients. Additionally, hydrogen peroxide has been known to lessen symptoms and, on certain occasions, remove the problem, although permanent scarring has occurred with this treatment in some sufferers. Clotrimazole is also used combined with selenium sulfide.
- Oral antifungals including ketoconazole or fluconazole in a single dose, or ketoconazole for seven days, or itraconazole can be used. The single-dose regimens, or pulse therapy regimens, can be made more effective by having the patient exercise 1–2 hours after the dose, to induce sweating. The sweat is allowed to evaporate, and showering is delayed for a day, leaving a film of the medication on the skin.
No treatment is necessary for women while they are still pregnant. In children, complications include development of an umbilical or ventral hernia, which is rare and can be corrected with surgery.
Alerting a medical professional is important when an infant displays signs of vomiting, redness or pain in the abdominal area.
Typically the separation of the abdominal muscles will lessen within the first 8 weeks after childbirth; however, the connective tissue remains stretched for many postpartum women. The weakening of the abdominal muscles and the reduced force transmission from the stretched linea alba may also make it difficult to lift objects, and cause lower back pain. Additional complications can manifest in weakened pelvic alignment and altered posture.
In mild cases, vitiligo patches can be hidden with makeup or other cosmetic camouflage solutions. If the affected person is pale-skinned, the patches can be made less visible by avoiding tanning of unaffected skin.
Phototherapy is considered a second-line treatment for vitiligo. Exposing the skin to light from UVB lamps is the most common treatment for vitiligo. The treatments can be done at home with an UVB lamp or in a clinic. The exposure time is managed so that the skin does not suffer overexposure. Treatment can take a few weeks if the spots are on the neck and face and if they existed not more than 3 years. If the spots are on the hands and legs and have been there more than 3 years, it can take a few months. Phototherapy sessions are done 2–3 times a week. Spots on a large area of the body may require full body treatment in a clinic or hospital. UVB broadband and narrowband lamps can be used, but narrowband ultraviolet picked around 311 nm is the choice. It has been constitutively reported that a combination of UVB phototherapy with other topical treatments improves re-pigmentation. However, some vitiligo patients may not see any changes to skin or re-pigmentation occurring. A serious potential side effect involves the risk of developing skin cancer, the same risk as an over-exposure to natural sunlight.
Ultraviolet light (UVA) treatments are normally carried out in a hospital clinic. Psoralen and ultraviolet A light (PUVA) treatment involves taking a drug that increases the skin's sensitivity to ultraviolet light, then exposing the skin to high doses of UVA light. Treatment is required twice a week for 6–12 months or longer. Because of the high doses of UVA and psoralen, PUVA may cause side effects such as sunburn-type reactions or skin freckling.
Narrowband ultraviolet B (NBUVB) phototherapy lacks the side-effects caused by psoralens and is as effective as PUVA. As with PUVA, treatment is carried out twice weekly in a clinic or every day at home, and there is no need to use psoralen.
Many different medications have been used to treat bruxism, including benzodiazepines, anticonvulsants, beta blockers, dopamine agents, antidepressants, muscle relaxants, and others. However, there is little, if any, evidence for their respective and comparative efficacies with each other and when compared to a placebo. A systematic review is underway to investigate the evidence for drug treatments in sleep bruxism.
Specific drugs that have been studied in sleep bruxism are clonazepam, levodopa, amitriptyline, bromocriptine, pergolide, clonidine, propranolol, and l-tryptophan, with some showing no effect and others appear to have promising initial results; however, it has been suggested that further safety testing is required before any evidence-based clinical recommendations can be made. When bruxism is related to the use of selective serotonin reuptake inhibitors in depression, adding buspirone has been reported to resolve the side effect. Tricyclic antidepressants have also been suggested to be preferable to selective serotonin reuptake inhibitors in people with bruxism, and may help with the pain.
Drugs used during pregnancy can have temporary or permanent effects on the fetus. Anything (including drugs) that can cause permanent deformities in the fetus are labeled as teratogens. In the U.S., drugs were classified into categories A, B, C, D and X based on the Food and Drug Administration (FDA) rating system to provide therapeutic guidance based on potential benefits and fetal risks. Drugs, including some multivitamins, that have demonstrated no fetal risks after controlled studies in humans are classified as Category A. On the other hand, drugs like thalidomide with proven fetal risks that outweigh all benefits are classified as Category X.
In traditional Chinese medicine, scalloping of the tongue is said to indicate qi vacuity. In some homeopathic sources, scalloping of the tongue is said to be indicative of high blood pressure.
Nutrition during pregnancy is important to ensure healthy growth of the fetus. Nutrition during pregnancy is different from the non-pregnant state. There are increased energy requirements and specific micronutrient requirements. Women benefit from education to encourage a balanced energy and protein intake during pregnancy. Some women may need professional medical advice if their diet is affected by medical conditions, food allergies, or specific religious/ ethical beliefs.
Adequate periconceptional (time before and right after conception) folic acid (also called folate or Vitamin B) intake has been shown to decrease the risk of fetal neural tube defects, such as spina bifida. The neural tube develops during the first 28 days of pregnancy, a urine pregnancy test is not usually positive until 14 days post-conception, explaining the necessity to guarantee adequate folate intake before conception. Folate is abundant in green leafy vegetables, legumes, and citrus. In the United States and Canada, most wheat products (flour, noodles) are fortified with folic acid.
DHA omega-3 is a major structural fatty acid in the brain and retina, and is naturally found in breast milk. It is important for the woman to consume adequate amounts of DHA during pregnancy and while nursing to support her well-being and the health of her infant. Developing infants cannot produce DHA efficiently, and must receive this vital nutrient from the woman through the placenta during pregnancy and in breast milk after birth.
Several micronutrients are important for the health of the developing fetus, especially in areas of the world where insufficient nutrition is common. Women living in low and middle income countries are suggested to take multiple micronutrient supplements containing iron and folic acid. These supplements have been shown to improve birth outcomes in developing countries, but do not have an effect on perinatal mortality. Adequate intake of folic acid, and iron is often recommended. In developed areas, such as Western Europe and the United States, certain nutrients such as Vitamin D and calcium, required for bone development, may also require supplementation. Vitamin E supplementation has not been shown to improve birth outcomes. Zinc supplementation has been associated with a decrease in preterm birth, but it is unclear whether it is causative. Daily iron supplementation reduces the risk of maternal anemia. Studies of routine daily iron supplementation for pregnant women found improvement in blood iron levels, without a clear clinical benefit. The nutritional needs for women carrying twins or triplets. are higher than those of women carrying one baby.
Women are counseled to avoid certain foods, because of the possibility of contamination with bacteria or parasites that can cause illness. Careful washing of fruits and raw vegetables may remove these pathogens, as may thoroughly cooking leftovers, meat, or processed meat. Unpasteurized dairy and deli meats may contain "Listeria," which can cause neonatal meningitis, stillbirth and miscarriage. Pregnant women are also more prone to "Salmonella" infections, can be in eggs and poultry, which should be thoroughly cooked. Cat feces and undercooked meats may contain the parasite Toxoplasma gondii and can cause toxoplasmosis. Practicing good hygiene in the kitchen can reduce these risks.
Women are also counseled to eat seafood in moderation and to eliminate seafood known to be high in mercury because of the risk of birth defects. Pregnant women are counseled to consume caffeine in moderation, because large amounts of caffeine are associated with miscarriage. However, the relationship between caffeine, birthweight, and preterm birth is unclear.