Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment with compression stockings should be offered to patients with lower extremity superficial phlebitis, if not contraindicated (e.g., peripheral artery disease). Patients may find them helpful for reducing swelling and pain once the acute inflammation subsides.
Nonsteroidal anti-inflammatory drugs (NSAID) are effective in relieving the pain associated with venous inflammation and were found in a randomized trial to significantly decrease extension and/or recurrence of superficial vein thrombosis.
Anticoagulation for patients with lower extremity superficial thrombophlebitis at increased risk for thromboembolism (affected venous segment of ≥5 cm, in proximity to deep venous system, positive medical risk factors).
Treatment with fondaparinux reduces the risk of subsequent venous thromboembolism.
Surgery reserved for extension of the clot to within 1 cm of the saphenofemoral junction in patients deemed unreliable for anticoagulation, failure of anticoagulation and patients with intense pain. Surgical therapy with ligation of saphenofemoral junction or stripping of thrombosed superficial veins appears to be associated higher rates of venous thromboembolism compared with treatment with anitcoagulants.
In terms of treatment for this condition the individual may be advised to do the following: "raise" the affected area to decrease swelling, and relieve pressure off of the affected area so it will encounter less pain. In certain circumstances drainage of the clot might be an option. In general, treatment may include the following:
Recommendations for those without cancer include anticoagulation (stopping further blood clots from forming) with dabigatran, rivaroxaban, apixaban, or edoxaban rather than warfarin or low molecular weight heparin (LMWH). For those with cancer LMWH is recommended. For initial treatment of VTE, fixed doses with LMWH may be more effective than adjusted doses of unfractionated heparin (UFH) in reducing blood clots. No differences in mortality, prevention of major bleeding, or preventing VTEs from recurring were observed between LMWH and UFH. No differences have been detected in the route of administration of UFH (subcutaneous or intravenous). LMWH is usually administered by a subcutaneous injection, and a persons blood clotting factors do not have to be monitored as closely as with UFH. People with cancer have a higher risk of experiencing reoccurring VTE episodes ("recurrent VTE"), despite taking preventative anticoagulation medication. These people should be given therapeutic doses of LMWH medication, either by switching from another anticoagulant or by taking a higher dose of LMWH.
For those with a small pulmonary embolism and few risk factors, no anticoagulation is needed. Anticoagulation is; however, recommended in those who do have risk factors. Thrombolysis is recommended in those with PEs that are causing low blood pressure.
Treatment usually consists of NSAIDs, such as ibuprofen and local compression (e.g., by compression stockings or a compress). If the phlebitis is associated with local bacterial infection, antibiotics may be used.
For acute infusion superficial thrombophlebitis, not enough evidence exists as of 2015 to determine treatment.
Evidence-based clinical guidelines were published in 2016 for the treatment of VTE.
Prevention consists of walking, drinking fluids and if currently hospitalized, changing of IV lines. Walking is especially suggested after a long period seated, particularly when one travels.
Treatment can be either conservative or active. Active treatments can be divided into surgical and non-surgical treatments. Newer methods including endovenous laser treatment, radiofrequency ablation and foam sclerotherapy appear to work as well as surgery for varices of the greater saphenous vein.
The National Institute for Health and Clinical Excellence (NICE) produced clinical guidelines in July 2013 recommending that all people with symptomatic varicose veins (C2S) and worse should be referred to a vascular service for treatment. Conservative treatments such as support stockings should not be used unless treatment was not possible.
The symptoms of varicose veins can be controlled to an extent with the following:
- Elevating the legs often provides temporary symptomatic relief.
- Advice about regular exercise sounds sensible but is not supported by any evidence.
- The wearing of graduated compression stockings with variable pressure gradients (Class II or III) has been shown to correct the swelling, nutritional exchange, and improve the microcirculation in legs affected by varicose veins. They also often provide relief from the discomfort associated with this disease. Caution should be exercised in their use in patients with concurrent peripheral arterial disease.
- The wearing of intermittent pneumatic compression devices have been shown to reduce swelling and increase circulation
- Diosmin/hesperidin and other flavonoids.
- Anti-inflammatory medication such as ibuprofen or aspirin can be used as part of treatment for superficial thrombophlebitis along with graduated compression hosiery – but there is a risk of intestinal bleeding. In extensive superficial thrombophlebitis, consideration should be given to anti-coagulation, thrombectomy, or sclerotherapy of the involved vein.
- Topical gel application helps in managing symptoms related to varicose veins such as inflammation, pain, swelling, itching, and dryness.
Pentoxifylline is a useful add on treatment to compression stockings and may also help by itself. It works by reducing platelet aggregation and thrombus formation. Gastrointestinal disturbances were reported as a potential adverse effect.
Sulodexide, which reduces the formation of blood clots and reduces inflammation, may improve the healing of venous ulcers when taken in conjunction with proper local wound care. Further research is necessary to determine potential adverse effects, the effectiveness, and the dosing protocol for sulodexide treatment.
An oral dose of aspirin is being investigated as a potential treatment option for people with venous ulcers. A 2016 Cochrane systematic review concluded that further research is necessary before this treatment option can be confirmed to be safe and effective.
Oral zinc supplements have not been proven to be effective in aiding the healing of venous ulcers, however more research is necessary to confirm these results.
Non-elastic, ambulatory, below knee (BK) compression counters the impact of reflux on venous pump failure. Compression therapy is used for venous leg ulcers and can decrease blood vessel diameter and pressure, which increases their effectiveness, preventing blood from flowing backwards. Compression is also used to decrease release of inflammatory cytokines, lower the amount of fluid leaking from capillaries and therefore prevent swelling, and prevent clotting by decreasing activation of thrombin and increasing that of plasmin. Compression is applied using elastic bandages or boots specifically designed for the purpose.
Regarding effectiveness, compression dressings improve healing. It is not clear whether non-elastic systems are better than a multilayer elastic system. Patients should wear as much compression as is comfortable. The type of dressing applied beneath the compression does not seem to matter, and hydrocolloid is not better than simple low adherent dressings. Recently there have been clinical studies on a multi-functional botanical-based ointment in combination with compression therapy in the treatment of difficult-to-heal wounds, including venous leg ulcers.
Intermittent pneumatic compression devices may be used, but it is not clear that they are superior to simple compression dressings.
It is not clear if interventions that are aimed to help people adhere to compression therapy are effective. More research is needed in this field.
Conservative treatment of CVI in the leg involves symptomatic treatment and efforts to prevent the condition from getting worse instead of effecting a cure. This may include
- Manual compression lymphatic massage therapy
- Skin lubrication
- Sequential compression pump
- Ankle pump
- Compression stockings
- Blood pressure medicine
- Frequent periods of rest elevating the legs above the heart level
- Tilting the bed so that the feet are above the heart. This may be achieved by using a 20 cm (7-inch) bed wedge or sleeping in a 6 degree Trendelenburg position. Obese or pregnant patients might be advised by their physicians to forgo the tilted bed.
Treatment of an episode of cholesterol emboli is generally symptomatic, i.e. it deals with the symptoms and complications but cannot reverse the phenomenon itself. In kidney failure resulting from cholesterol crystal emboli, statins (medication that reduces cholesterol levels) have been shown to halve the risk of requiring hemodialysis.
Surgical treatment of CVI attempts a cure by physically changing the veins with incompetent valves. Surgical treatments for CVI include the following:
- Linton procedures (i.e. subfascial ligation of perforating veins in the lower extremity, an older treatment)
- Ligation. Tying off a vein to prevent blood flow
- Vein stripping. Removal of the vein.
- Surgical repair.
- Endovenous Laser Ablation
- Vein transplant.
- Subfascial endoscopic perforator surgery. Tying off the vein with an endoscope.
- Valve repair (experimental)
- Valve transposition (experimental)
- Hemodynamic surgeries.
Patient characteristics and predisposing factors for thrombophlebitis nearly mirror those for DVT; thrombophlebitis is a risk factor for the development of DVT, and vice versa.
Lower extremity superficial phlebitis is associated with conditions that increase the risk of thrombosis, including abnormalities of coagulation or fibrinolysis, endothelial dysfunction, infection, venous stasis, intravenous therapy and intravenous drug abuse.
Cilostazol or pentoxifylline can improve symptoms in some. Cilostazol may improve walking distance for people who experience claudication due to peripheral artery disease, but there is no strong evidence to suggest that it improves the quality of life, decreases mortality, or decreases the risk of cardiovascular events.
Treatment with other drugs or vitamins are unsupported by clinical evidence, "but trials evaluating the effect of folate and vitamin B-12 on hyperhomocysteinemia, a putative vascular risk factor, are near completion".
Superficial vein thrombosis (SVT) is a type of venous thrombosis, or a blood clot in a vein, which forms in a superficial vein near the surface of the body. Usually there is thrombophlebitis, which is an inflammatory reaction around a thrombosed vein, presenting as a painful induration with erythema. SVT has a limited clinical significance (in terms of morbidity and mortality) when compared to a deep vein thrombosis (DVT), which occurs deeper in the body, at the deep venous system level. If the blood clot is too near from the sapheno-femoral junction there is a bigger risk of pulmonary embolism.
Phlebitis or venitis is the inflammation of a vein, usually in the legs. It most commonly occurs in superficial veins. Phlebitis often occurs in conjunction with thrombosis and is then called thrombophlebitis or superficial thrombophlebitis. Unlike deep vein thrombosis, the probability that superficial thrombophlebitis will cause a clot to break up and be transported in pieces to the lung is very low.
In emergency situations, care is directed at stopping blood loss, maintaining plasma volume, correcting disorders in coagulation induced by cirrhosis, and appropriate use of antibiotics such as quinolones or ceftriaxone. Blood volume resuscitation should be done promptly and with caution. The goal should be hemodynamic stability and hemoglobin of over 8 g/dl. Resuscitation of all lost blood leads to increase in portal pressure leading to more bleeding. Volume resuscitation can also worsen ascites and increase portal pressure. (AASLD guidelines)
Therapeutic endoscopy is considered the mainstay of urgent treatment. The two main therapeutic approaches are variceal ligation or banding and sclerotherapy.
In cases of refractory bleeding, balloon tamponade with a Sengstaken-Blakemore tube may be necessary, usually as a bridge to further endoscopy or treatment of the underlying cause of bleeding (usually portal hypertension). Esophageal devascularization operations such as the Sugiura procedure can also be used to stop complicated variceal bleeding. Methods of treating the portal hypertension include: transjugular intrahepatic portosystemic shunt, or a distal splenorenal shunt procedure or a liver transplantation.
Nutritional supplementation is not necessary if the patient is not eating for four days or less.
Terlipressin and octreotide for 1 to 5 days have also been used.
Lemierre's syndrome is primarily treated with antibiotics given intravenously. "Fusobacterium necrophorum" is generally highly susceptible to beta-lactam antibiotics, metronidazole, clindamycin and third generation cephalosporins while the other fusobacteria have varying degrees of resistance to beta-lactams and clindamycin. Additionally, there may exist a co-infection by another bacterium. For these reasons is often advised not to use monotherapy in treating Lemierre's syndrome. Penicillin and penicillin-derived antibiotics can thus be combined with a beta-lactamase inhibitor such as clavulanic acid or with metronidazole. Clindamycin can be given as monotherapy.
If antibiotic therapy does not improve the clinical picture, it may prove useful to drain any abscesses and/or perform ligation of the internal jugular vein where the antibiotic can not penetrate.
There is no evidence to opt for or against the use of anticoagulation therapy. The low incidence of Lemierre's syndrome has not made it possible to set up clinical trials to study the disease.
The disease can often be untreatable, especially if other negative factors occur, i.e. various diseases occurring at the same time, such as meningitis, pneumonia.
In ideal circumstances, patients with known varices should receive treatment to reduce their risk of bleeding. The non-selective β-blockers (e.g., propranolol, timolol or nadolol) and nitrates (e.g., isosorbide mononitrate (IMN) have been evaluated for secondary prophylaxis. Non-selective β-blockers (but not cardioselective β-blockers like atenolol) are preferred because they decrease both cardiac output by β blockade and splanchnic blood flow by blocking vasodilating β receptors at splanchnic vasculature. The effectiveness of this treatment has been shown by a number of different studies.
However, non-selective β-blockers do not prevent the "formation" of esophageal varices.
When medical contraindications to beta-blockers exist, such as significant reactive airway disease, then treatment with prophylactic endoscopic variceal ligation is often performed.
After a trial of the best medical treatment outline above, if symptoms persist, patients may be referred to a vascular or endovascular surgeon. The benefit of revascularization is thought to correspond to the severity of ischemia and the presence of other risk factors for limb loss such as wound and infection severity.
- Angioplasty (PTA, or percutaneous transluminal angioplasty) can be done on solitary lesions in large arteries, such as the femoral artery, but angioplasty may not have sustained benefits. Patency rates following angioplasty are highest for iliac arteries, and decrease with arteries towards the toes. Other criteria that affect outcome following revascularization are length of lesion, and number of lesions. There does not appear to be long term advantages or sustained benefit to placing a stent following angioplasty in order to hold the narrowing of the superficial femoral artery open.
- Atherectomy, in which the plaque is scraped off of the inside of the vessel wall (albeit with no better results than angioplasty).
- Vascular bypass grafting can be performed to circumvent a diseased area of the arterial vasculature. The great saphenous vein is used as a conduit if available, although artificial (Gore-Tex or PTFE) material is often used for long grafts when adequate venous conduit is unavailable.
- When gangrene has set in, amputation is required to prevent infected tissues from causing sepsis a life-threatening illness.
- Thrombolysis and thrombectomy are used in cases of arterial thrombosis or embolism.
Intracerebral hemorrhages is a severe condition requiring prompt medical attention. Treatment goals include lifesaving interventions, supportive measures, and control of symptoms. Treatment depends on the location, extent, and cause of the bleeding. Often, treatment can reverse the damage that has been done.
A craniotomy is sometimes done to remove blood, abnormal blood vessels, or a tumor. Medications may be used to reduce swelling, prevent seizures, lower blood pressure, and control pain.
Early treatment is essential to keep the affected limb viable. The treatment options include injection of an anticoagulant, thrombolysis, embolectomy, surgical revascularisation, or amputation. Anticoagulant therapy is initiated to prevent further enlargement of the thrombus. Continuous IV unfractionated heparin has been the traditional agent of choice.
If the condition of the ischemic limb is stabilized with anticoagulation, recently formed emboli may be treated with catheter-directed thrombolysis using intraarterial infusion of a thrombolytic agent (e.g., recombinant tissue plasminogen activator (tPA), streptokinase, or urokinase). A percutaneous catheter inserted into the femoral artery and threaded to the site of the clot is used to infuse the drug. Unlike anticoagulants, thrombolytic agents work directly to resolve the clot over a period of 24 to 48 hours.
Direct arteriotomy may be necessary to remove the clot. Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for cases where limb salvage is not possible. If the patient continues to have a risk of further embolization from some persistent source, such as chronic atrial fibrillation, treatment includes long-term oral anticoagulation to prevent further acute arterial ischemic episodes.
Decrease in body temperature reduces the aerobic metabolic rate of the affected cells, reducing the immediate effects of hypoxia. Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting thawing and warming of tissues until warmer temperatures can be sustained may reduce reperfusion injury.
The first-line treatment for arteritis is oral glucocorticoid (steroid) medication, such as prednisone, taken daily for a period of three months. After this initial phase, the medication may be reduced in dose or frequency, e.g. every other day, if possible. If the disease worsens with the new treatment schedule, a cytotoxic medication may be given, in addition to the glucocorticoid. Commonly used cytotoxic agents include azathioprine, methotrexate, or cyclophosphamide. The dose of glucocorticoid medication may be decreased if response to treatment is good. This medication may be reduced gradually once the disease becomes inactive, slowly tapering the dose (to allow the body time to adjust) until the medication may be stopped completely. Conversely, if the disease remains active, the medication will need to be increased. After six months, if the medication cannot be reduced in frequency to alternate days, or if in 12 months the medications cannot be stopped completely, then treatment is deemed to have failed.
Pulsed therapy is an alternative method of administering the medications above, using much higher doses over a short period of time (a pulse), to reduce the inflammation within the arteries. Methylprednisolone, a glucocorticoid, is often used for pulse therapy; cyclophosphamide is an alternative. This method has been shown to be successful for some patients. Immunosuppressive pulse therapy, such as with cyclophosphamide, has also demonstrated relief of symptoms associated with arteritis.
Some malignancies, especially gliomas (25%), as well as adenocarcinomas of the pancreas and lung, are associated with hypercoagulability (the tendency to form blood clots) for reasons that are incompletely understood, but may be related to factors secreted by the tumors, in particular a circulating pool of cell-derived tissue factor-containing microvesicles. Some adenocarcinomas secrete mucin that can interact with selectin found on platelets, thereby causing small clots to form.
In patients with malignancy-associated hypercoagulable states, the blood may spontaneously form clots in the portal vessels, the deep veins of the extremities (such as the leg), or the superficial veins anywhere on the body. These clots present as visibly swollen blood vessels (thrombophlebitis), especially the veins, or as intermittent pain in the affected areas.