Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The focus of treatment is to remove plaque. Therapy is aimed at the reduction of oral bacteria and may take the form of regular periodic visits to a dental professional together with adequate oral hygiene home care. Thus, several of the methods used in the prevention of gingivitis can also be used for the treatment of manifest gingivitis, such as scaling, root planing, curettage, mouth washes containing chlorhexidine or hydrogen peroxide, and flossing. Interdental brushes also help remove any causative agents.
Powered toothbrushes work better than manual toothbrushes in reducing the disease.
The active ingredients that "reduce plaque and demonstrate effective reduction of gingival inflammation over a period of time" are triclosan, chlorhexidine digluconate, and a combination of thymol, menthol, eucalyptol, and methyl salicylate. These ingredients are found in toothpaste and mouthwash. Hydrogen peroxide was long considered a suitable over-the-counter agent to treat gingivitis. There has been evidence to show the positive effect on controlling gingivitis in short-term use. A study indicates the fluoridated hydrogen peroxide-based mouth rinse can remove teeth stain and reduce gingivitis.
Based on a limited evidence, mouthwashes with essential oils may also be useful, as they contain ingredients with anti-inflammtory properties, such as thymol, menthol and eucalyptol.
The bacteria that causes gingivitis can be controlled by using an oral irrigator daily with a mouthwash containing an antibiotic. Either amoxicillin, cephalexin, or minocycline in 16 ounces of a non-alcoholic fluoride mouthwash is an effective mixture.
Overall, intensive oral hygiene care has been shown to improve gingival health in individuals with well-controlled type 2 diabetes. Periodontal destruction is also slowed down due to the extensive oral care. Intensive oral hygiene care (oral health education plus supra-gingival scaling) without any periodontal therapy improves gingival health, and may prevent progression of gingivitis in well-controlled diabetes.
The cornerstone of successful periodontal treatment starts with establishing excellent oral hygiene. This includes twice-daily brushing with daily flossing. Also, the use of an interdental brush is helpful if space between the teeth allows. For smaller spaces, products such as narrow picks with soft rubber bristles provide excellent manual cleaning. Persons with dexterity problems, such as arthritis, may find oral hygiene to be difficult and may require more frequent professional care and/or the use of a powered toothbrush. Persons with periodontitis must realize it is a chronic inflammatory disease and a lifelong regimen of excellent hygiene and professional maintenance care with a dentist/hygienist or periodontist is required to maintain affected teeth.
Treatment options include antibiotic therapy (not a permanent solution), endodontic (root canal) therapy, or extraction.
Most alternative "at-home" gum disease treatments involve injecting antimicrobial solutions, such as hydrogen peroxide, into periodontal pockets via slender applicators or oral irrigators. This process disrupts anaerobic micro-organism colonies and is effective at reducing infections and inflammation when used daily. A number of other products, functionally equivalent to hydrogen peroxide, are commercially available, but at substantially higher cost. However, such treatments do not address calculus formations, and so are short-lived, as anaerobic microbial colonies quickly regenerate in and around calculus.
Doxycycline may be given alongside the primary therapy of scaling (see § initial therapy). Doxycycline has been shown to improve indicators of disease progression (namely probing depth and attachment level). Its mechanism of action involves inhibition of matrix metalloproteinases (such as collagenase), which degrade the teeth's supporting tissues (periodontium) under inflammatory conditions. To avoid killing beneficial oral microbes, only small doses of doxycycline (20 mg) are used.
Local application of statin may be useful.
Long term randomized clinical trials need to be conducted to determine if regular routine scaling and polishing is clinically effective for reducing the risk of chronic periodontitis in healthy adults.
Lasers are increasingly being used in treatments for chronic periodontitis. However, there is some controversy over their use:
"No consistent evidence supports the efficacy of laser treatment as an adjunct to non-surgical periodontal treatment in adults with chronic periodontitis."
Chemical antimicrobials may be used by the clinician to help reduce the bacterial load in the diseased pocket.
"Among the locally administered adjunctive antimicrobials, the most positive results occurred for tetracycline, minocycline, metronidazole, and chlorhexidine. Adjunctive local therapy generally reduced PD levels...Whether such improvements, even if statistically significant, are clinically meaningful remains a question."
Minocycline is typically delivered via slim syringe applicators.
Chlorhexidine impregnated chips are also available.
Hydrogen peroxide is a naturally occurring antimicrobial that can be delivered directly to the gingival sulcus or periodontal pocket using a custom formed medical device called a Perio Tray. [Title = Custom Tray Application of Peroxide Gel as an Adjunct to Scaling and Root Planing in the Treatment of Periodontitis:
A Randomized, Controlled Three-Month Clinical Trial J Clin Dent 2012;23:48–56.]
Hydrogen peroxide gel was demonstrated to be effective in controlling the bacteria biofilm [Subgingival Delivery of Oral Debriding Agents: A Proof of Concept J Clin Dent 2011;22:149–158] The research shows that a direct application of hydrogen peroxide gel killed virtually all of the bacterial biofilm, was directly and mathematically delivered up to 9mm into periodontal pockets.
Gingivitis can be prevented through regular oral hygiene that includes daily brushing and flossing. Hydrogen peroxide, saline, alcohol or chlorhexidine mouth washes may also be employed. In a 2004 clinical study, the beneficial effect of hydrogen peroxide on gingivitis has been highlighted.
Rigorous plaque control programs along with periodontal scaling and curettage also have proved to be helpful, although according to the American Dental Association, periodontal scaling and root planing are considered as a treatment for periodontal disease, not as a preventive treatment for periodontal disease. In a 1997 review of effectiveness data, the U.S. Food and Drug Administration (FDA) found clear evidence showing that toothpaste containing triclosan was effective in preventing gingivitis.
Treatment includes irrigation and debridement of necrotic areas (areas of dead and/or dying gum tissue), oral hygiene instruction and the uses of mouth rinses and pain medication. If there is systemic involvement, then oral antibiotics may be given, such as metronidazole. As these diseases are often associated with systemic medical issues, proper management of the systemic disorders is appropriate.
For those patients with periodontitis as a manifestation of hematologic disorders, coordination with the patient's physician is instrumental in planning periodontal treatment. Therapy should be avoided during periods of exacerbation of the malignancy or during active phases of chemotherapy, and antimicrobial therapy might be considered when urgent treatment must be performed when granulocyte counts are low.
If there is persistent continuation of inflammation and bleeding, a prescription of antiplaque rinse would be useful.
There are many causes of toothache and its diagnosis is a specialist topic, meaning that attendance at a dentist is usually required. Since many cases of toothache are inflammatory in nature, over the counter non-steroidal anti-inflammatory drugs (NSAIDs) may help (unless contraindicated, such as with a peptic ulcer). Generally, NSAIDs are as effective as aspirin alone or in combination with codeine. However, simple analgesics may have little effect on some causes of toothache, and the severe pain can drive individuals to exceed the maximum dose. For example, when acetaminophen (paracetamol) is taken for toothache, an accidental overdose is more likely to occur when compared to people who are taking acetaminophen for other reasons. Another risk in persons with toothache is a painful chemical burn of the oral mucosa caused by holding a caustic substance such as aspirin tablets and toothache remedies containing eugenol (such as clove oil) against the gum. Although the logic of placing a tablet against the painful tooth is understandable, an aspirin tablet needs to be swallowed to have any pain-killing effect. Caustic toothache remedies require careful application to the tooth only, without coming into excessive contact with the soft tissues of the mouth.
For the dentist, the goal of treatment generally is to relieve the pain, and wherever possible to preserve or restore function. The treatment depends on the cause of the toothache, and frequently a clinical decision regarding the current state and long-term prognosis of the affected tooth, as well as the individual's wishes and ability to cope with dental treatment, will influence the treatment choice. Often, administration of an intra-oral local anesthetic such as lidocaine and epinephrine is indicated in order to carry out pain-free treatment. Treatment may range from simple advice, removal of dental decay with a dental drill and subsequent placement of a filling, to root canal treatment, tooth extraction, or debridement.
In pulpitis, an important distinction in regard to treatment is whether the inflammation is reversible or irreversible. Treatment of reversible pulpitis is by removing or correcting the causative factor. Usually, the decay is removed, and a sedative dressing is used to encourage the pulp to return to a state of health, either as a base underneath a permanent filling or as a temporary filling intended to last for a period while the tooth is observed to see if pulpitis resolves. Irreversible pulpitis and its sequalae pulp necrosis and apical periodontitis require treatment with root canal therapy or tooth extraction, as the pulp acts as a nidus of infection, which will lead to a chronic infection if not removed. Generally, there is no difference in outcomes between whether the root canal treatment is completed in one or multiple appointments. The field of regenerative endodontics is now developing ways to clean the pulp chamber and regenerate the soft and hard tissues to either regrow or simulate pulp structure. This has proved especially helpful in children where the tooth root has not yet finished developing and root canal treatments have lower success rates.
Reversible/irreversible pulpitis is a distinct concept from whether the tooth is restorable or unrestorable, e.g. a tooth may only have reversible pulpitis, but has been structurally weakened by decay or trauma to the point that it is impossible to restore the tooth in the long term.
The College of Registered Dental Hygienists of Alberta (CRDHA) defines a dental hygienist as "a health care professional whose work focuses on the oral health of an individual or community." These dental professionals aim to improve oral health by educating patients on the prevention and management of oral disease. Dental hygienists can be found performing oral health services in various settings, including private dental offices, schools, and other community settings, such as long-term care facilities. As mentioned above in the clinical significance section, plaque and calculus deposits are a major etiological factor in the development and progression of oral disease. An important part of the scope of practice of a dental hygienist is the removal of plaque and calculus deposits. This is achieved through the use of specifically designed instruments for debridement of tooth surfaces. Treatment with these types of instruments is necessary as calculus deposits cannot be removed by brushing or flossing alone. To effectively manage disease or maintain oral health, thorough removal of calculus deposits should be completed at frequent intervals. The recommended frequency of dental hygiene treatment can be made by a registered professional, and is dependent on individual patient needs. Factors that are taken into consideration include an individual's overall health status, tobacco use, amount of calculus present, and adherence to a professionally recommended home care routine.
Hand instruments are specially designed tools used by dental professionals to remove plaque and calculus deposits that have formed on the teeth. These tools include scalers, curettes, jaquettes, hoes, files and chisels. Each type of tool is designed to be used in specific areas of the mouth. Some commonly used instruments include sickle scalers which are designed with a pointed tip and are mainly used supragingivally. Curettes are mainly used to remove subgingival calculus, smooth root surfaces and to clean out periodontal pockets. Curettes can be divided into two subgroups: universals and area specific instruments. Universal curettes can be used in multiple areas, while area specific instruments are designed for select tooth surfaces. Gracey curettes are a popular type of area specific curettes. Due to their design, area specific curettes allow for better adaptation to the root surface and can be slightly more effective than universals. Hoes, chisels, and files are less widely used than scalers and curettes. These are beneficial when removing large amounts of calculus or tenacious calculus that cannot be removed with a curette or scaler alone. Chisels and hoes are used to remove bands of calculus, whereas files are used to crush burnished or tenacious calculus.
For hand instrumentation to be effective and efficient, it is important for clinicians to ensure that the instruments being used are sharp. It is also important for the clinician to understand the design of the hand instruments to be able to adapt them properly.
Ultrasonic scalers, also known as power scalers, are effective in removing calculus, stain, and plaque. These scalers are also useful for root planing, curettage, and surgical debridement. Not only is tenacious calculus and stain removed more effectively with ultrasonic scalers than with hand instrumentation alone, it is evident that the most satisfactory clinical results are when ultrasonics are used in adjunct to hand instrumentation. There are two types of ultrasonic scalers; piezoelectric and magnetostrictive. Oscillating material in both of these handpieces cause the tip of the scaler to vibrate at high speeds, between 18,000 and 50,000 Hz. The tip of each scaler uses a different vibration pattern for removal of calculus. The magnetostrictive power scaler vibration is elliptical, activating all sides of the tip, whereas the piezoelectric vibration is linear and is more active on the two sides of the tip.
Special tips for ultrasonic scalers are designed to address different areas of the mouth and varying amounts of calculus buildup. Larger tips are used for heavy subgingival or supragingival calculus deposits, whereas thinner tips are designed more for definitive subgingival debridement. As the high frequency vibrations loosen calculus and plaque, heat is generated at the tip. A water spray is directed towards the end of the tip to cool it as well as irrigate the gingiva during debridement. Only the first 1–2 mm of the tip on the ultrasonic scaler is most effective for removal, and therefore needs to come into direct contact with the calculus to fracture the deposits. Small adaptations are needed in order to keep the tip of the scaler touching the surface of the tooth, while overlapping oblique, horizontal, or vertical strokes are used for adequate calculus removal.
Current research on potentially more effective methods of subgingival calculus removal focuses on the use of near-ultraviolet (NUV) and near-infrared lasers, such as Er,Cr:YSGG lasers. The use of lasers in periodontal therapy offers a unique clinical advantage over conventional hand instrumentation, as the thin and flexible fibers can deliver laser energy into periodontal pockets that are otherwise difficult to access. Near-infrared lasers, such as the Er,CR:YSGG laser, have been proposed as an effective adjunct for calculus removal as the emission wavelength is highly absorbed by water, a large component of calculus deposits. An optimal output power setting of 1.0-W with the near-infrared Er,Cr:YSGG laser has been shown to be effective for root scaling. Near-ultraviolet (NUV) lasers have also shown promise as they allow the dental professional to remove calculus deposits quickly, without removing underlying healthy tooth structure, which often occurs during hand instrumentation. Additionally, NUV lasers are effective at various irradiation angles for calculus removal. Discrepancies in the efficiency of removal are due to the physical and optical properties of the calculus deposits, not to the angle of laser use. Dental hygienists must receive additional theoretical and clinical training on the use of lasers, where legislation permits.
Disclosing tablets are similar to that of disclosing gels, except that they are placed in the mouth and chewed on for approximately one minute. The remaining tablet or saliva is then spit out. Disclosing gels will show the presence of the plaque, but will often not show the level of maturity of the plaque. Disclosing tablets are often prescribed or given to patients with orthodontic appliances for use before and after tooth brushing to ensure optimal cleaning. These are also helpful educational tools for young children or patients that are struggling to remove dental plaque in certain areas. Disclosing gels and tablets are useful for individuals of all ages in ensuring efficient dental plaque removal.
The first line therapy for aphthous stomatitis is topical agents rather than systemic medication, with topical corticosteroids being the mainstay treatment. Systemic treatment is usually reserved for severe disease due to the risk of adverse side effects associated with many of these agents. A systematic review found that no single systemic intervention was found to be effective. Good oral hygiene is important to prevent secondary infection of the ulcers.
Occasionally, in females where ulceration is correlated to the menstrual cycle or to birth control pills, progestogen or a change in birth control may be beneficial. Use of nicotine replacement therapy for people who have developed oral ulceration after stopping smoking has also been reported. Starting smoking again does not usually lessen the condition. Trauma can be reduced by avoiding rough or sharp foodstuffs and by brushing teeth with care. If sodium lauryl sulfate is suspected to be the cause, avoidance of products containing this chemical may be useful and prevent recurrence in some individuals. Similarly patch testing may indicate that food allergy is responsible, and the diet modified accordingly. If investigations reveal deficiency states, correction of the deficiency may result in resolution of the ulceration. For example, there is some evidence that vitamin B12 supplementation may prevent recurrence in some individuals.
The vast majority of people with aphthous stomatitis have minor symptoms and do not require any specific therapy. The pain is often tolerable with simple dietary modification during an episode of ulceration such as avoiding spicy and acidic foods and beverages. Many different topical and systemic medications have been proposed (see table), sometimes showing little or no evidence of usefulness when formally investigated. Some of the results of interventions for RAS may in truth represent a placebo effect. No therapy is curative, with treatment aiming to relieve pain, promote healing and reduce the frequency of episodes of ulceration.
Untreated, the infection may lead to rapid destruction of the periodontium and can spread, as necrotizing stomatitis or noma, into neighbouring tissues in the cheeks, lips or the bones of the jaw. As stated, the condition can occur and be especially dangerous in people with weakened immune systems. This progression to noma is possible in malnourished susceptible individuals, with severe disfigurement possible.
As the granulomas are caused by collections of immune system cells, particularly T cells, there has been some success using immunosuppressants (like cyclophosphamide, cladribine, chlorambucil, and cyclosporine), immunomodulatory (pentoxifylline and thalidomide), and anti-tumor necrosis factor treatment (such as infliximab, etanercept, golimumab, and adalimumab).
In a clinical trial cyclosporine added to prednisone treatment failed to demonstrate any significant benefit over prednisone alone in people with pulmonary sarcoidosis, although there was evidence of increased toxicity from the addition of cyclosporine to the steroid treatment including infections, malignancies (cancers), hypertension, and kidney dysfunction. Likewise chlorambucil and cyclophosphamide are seldom used in the treatment of sarcoidosis due to their high degree of toxicity, especially their potential for causing malignancies. Infliximab has been used successfully to treat pulmonary sarcoidosis in clinical trials in a number of persons. Etanercept, on the other hand, has failed to demonstrate any significant efficacy in people with uveal sarcoidosis in a couple of clinical trials. Likewise golimumab has failed to show any benefit in persons with pulmonary sarcoidosis. One clinical trial of adalimumab found treatment response in about half of subjects, which is similar to that seen with infliximab, but as adalimumab has better tolerability profile it may be preferred over infliximab.
Ursodeoxycholic acid has been used successfully as a treatment for cases with liver involvement. Thalidomide has also been tried successfully as a treatment for treatment-resistant lupus pernio in a clinical trial, which may stem from its anti-TNF activity, although it failed to exhibit any efficacy in a pulmonary sarcoidosis clinical trial. Cutaneous disease may be successfully managed with antimalarials (such as chloroquine and hydroxychloroquine) and the tetracycline antibiotic, minocycline. Antimalarials have also demonstrated efficacy in treating sarcoidosis-induced hypercalcemia and neurosarcoidosis. Long-term use of antimalarials is limited, however, by their potential to cause irreversible blindness and hence the need for regular ophthalmologic screening. This toxicity is usually less of a problem with hydroxychloroquine than with chloroquine, although hydroxychloroquine can disturb the glucose homeostasis.
Recently selective phosphodiesterase 4 (PDE4) inhibitors like apremilast (a thalidomide derivative), roflumilast, and the less subtype-selective PDE4 inhibitor, pentoxifylline, have been tried as a treatment for sarcoidosis, with successful results being obtained with apremilast in cutaneous sarcoidosis in a small open-label study. Pentoxifylline has been used successfully to treat acute disease although its use is greatly limited by its gastrointestinal toxicity (mostly nausea, vomiting, and diarrhea). Case reports have supported the efficacy of rituximab, an anti-CD20 monoclonal antibody and a clinical trial investigating atorvastatin as a treatment for sarcoidosis is under-way. ACE inhibitors have been reported to cause remission in cutaneous sarcoidosis and improvement in pulmonary sarcoidosis, including improvement in pulmonary function, remodeling of lung parenchyma and prevention of pulmonary fibrosis in separate case series'. Nicotine patches have been found to possess anti-inflammatory effects in sarcoidosis patients, although whether they had disease-modifying effects requires further investigation. Antimycobacterial treatment (drugs that kill off mycobacteria, the causative agents behind tuberculosis and leprosy) has also proven itself effective in treating chronic cutaneous (that is, it affects the skin) sarcoidosis in one clinical trial. Quercetin has also been tried as a treatment for pulmonary sarcoidosis with some early success in one small trial.
Because of its uncommon nature, the treatment of male reproductive tract sarcoidosis is controversial. Since the differential diagnosis includes testicular cancer, some recommend orchiectomy, even if evidence of sarcoidosis in other organs is present. In the newer approach, testicular, epididymal biopsy and resection of the largest lesion has been proposed.
In 2006, retinoids and antibiotics have been used with a successful dental maintenance for one year. In the past, only Extraction of all teeth and construction of a complete denture were made.
An alternative to rehabilitation with conventional dental prothesis after total loss of the natural teeth was proposed by Drs Ahmad Alzahaili and his teacher Jean-François Tulasne (developer of the partial bone graft technique used). This approach entails transplanting bone extracted from the cortical external surface of the parietal bone to the patient’s mouth, affording the patient the opportunity to lead a normal life.
Notwithstanding this treatment do not scope the disease itself. Actually it is the repositioning of bone from calvaria to the maxillary bones, and placement of dental implants in a completely edentulous maxilae, when the patient has already lost all teeth. An already developed method to reconstruct maxillae in edentulous elderly people by other dental professionals.
There's still no real treatment to help those who suffer from this disease to keep all their natural teeth, though their exfoliation and loss can be delayed.
The maintenance of teeth is done by dental professionals with a procedure called scaling and root planing with the use of systemic antibiotics. The syndrome should be diagnosed as earlier as possible, so the teeth can be kept longer in the mouth, helping the development of the maxillary bones.
Plaque disclosing products, also known as disclosants, make plaque clinically visible. Clean surfaces of the teeth do not absorb the disclosant, only rough surfaces. Plaque disclosing gels can be either completed at home or in the dental clinic. Before using these at home or in the dental clinic check with your general practitioners for any allergies to iodine, food colouring or any other ingredients that may be present in these products. These gels provide a visual aid in assessing plaque biofilm presence and can also show the maturity of the dental plaque.
There are no prospective randomized controlled trials studying therapies for relapsing polychondritis. Evidence for efficacy of treatments is based on case reports and series of small groups of patients.
For mild cases limited to joint pain or arthritis, oral nonsteroidal anti-inflammatory drugs (NSAIDs) may be used. Other treatments typically involve medications to suppress the immune system. Corticosteroids are frequently used for more serious disease. Steroid-sparing medications such as azathioprine or methotrexate may be used to minimize steroid doses and limit the side effects of steroids. For severe disease cyclophosphamide is often given in addition to high dose intravenous steroids.
Periodontitis as a manifestation of systemic diseases is one of the seven categories of periodontitis as defined by the American Academy of Periodontology 1999 classification system. At least 16 systemic diseases have been linked to periodontitis. These systemic diseases are associated with periodontal disease because they generally contribute to either a decreased host resistance to infections or dysfunction in the connective tissue of the gums, increasing patient susceptibility to inflammation-induced destruction.
These secondary periodontal inflammations should not be confused by other conditions in which an epidemiological association with periodontitis was revealed, but no causative connection was proved yet. Such conditions are coronary heart diseases, cerebrovascular diseases and erectile dysfunction.
Periapical periodontitis (also termed apical periodontitis, AP, or periradicular periodontitis) is an acute or chronic inflammatory lesion around the apex of a tooth root which is usually caused by bacterial invasion of the pulp of the tooth. The term is derived from "peri-" meaning "around", "apical" referring to the apex of the root (the tip of the root), and "-itis" meaning a disease characterized by inflammation. Periapical periodontitis can be considered a sequela in the natural history of dental caries (tooth decay), irreversible pulpitis and pulpal necrosis, since it is the likely outcome of untreated dental caries, although not always. In some cases, periapical periodontitis can occur due to occlusal high spots post-restoration, endodontic root filling material extrusion or bacterial invasion and infection from a gingival communication (rather than a pulpal source). Periapical periodontitis may develop into a periapical abscess, where a collection of pus forms at the end of the root, the consequence of spread of infection from the tooth pulp (odontogenic infection), or into a periapical cyst, where an epithelial lined, fluid filled structure forms.
This disease has not been shown to be life-threatening or the cause of death in patients. However, treatment is necessary to maintain a healthy lifestyle.