Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Non-selective beta-blockers are the most effective in reducing the frequency and severity of PSH episodes. They help decrease the effect of circulating catecholamines and lower metabolic rates, which are high in patients during PSH episodes. Beta-blockers also help in reducing fever, diaphoresis, and in some cases dystonia. Propanolol is a common beta-blocker administered due to the fact that it penetrates the blood-brain barrier relatively well. Typically it is administered in doses of twenty milligrams to sixty milligrams every four to six hours in the treatment of PSH.
The two most common medications used in the treatment of paroxysmal sympathetic hyperactivity are morphine sulfate and beta-blockers. Morphine is useful in helping halt episodes that have started to occur. Beta-blockers are helpful in preventing the occurrence of 'sympathetic storms'. Other drugs that have been used and have in some cases been helpful are dopamine agonists, other various opiates, benzodiazepines, clonidine, and baclofen. Chlorpromazine and haloperidol, both dopamine antagonists, in some cases have worsened PSH symptoms. These drugs are in use currently for treatment; exact pathways are not known and wide-range helpfulness is speculative.
Most pharmacological treatments work poorly, but the best treatment is a low dosage of clonazepam, a muscle relaxant. Patients may also benefit from other benzodiazepines, phenobarbital, and other anticonvulsants such as valproic acid. Affected individuals have reported garlic to be effective for softening the attacks, but no studies have been done on this.
The most common drug used to treat AHC is flunarizine. Flunarizine functions by acting as a calcium channel blocker. Other drugs, in order of frequency of use are benzodiazepines, carbamazapine, barbiturates, and valproic acid. Flunarizine is prescribed for the purpose of reducing the severity of AHC attacks and the number of episodes, though it rarely stops attacks altogether. Minimizing the attacks may help reduce damage to the body from hemiplegic attacks and improve long-term outcomes as far as mental and physical disabilities are concerned.
Experts differ in their confidence in flunarizine's effectiveness. Some studies have found it to be very effective in reducing the duration, severity, and frequency of hemiplegic attacks. It is generally considered the best treatment available, but this drug is thought by some to be of little benefit to AHC patients. Many patients suffer adverse effects without seeing any improvement. Flunarizine also causes problems because it is difficult for patients to obtain, as it is not readily available in the United States.
PKD patients usually show a good response to anticonvulsants. Most commonly used medications are sodium blockers, carbamazepine and phenytoin. During a drug-testing study, patients reported a decreasing response to the latter use of anticonvulsants and switched to carbamazepine or phenytoin. Refraining from established triggers such as sudden movement has been shown to lessen attacks occurrences. Avoidance of predisposing factors such as stress, excitement, and fatigue also help manage attacks.
Current research at the University of Utah is investigating whether sodium oxybate, also known as Gamma-Hydroxybutyric acid is an effective treatment for AHC. Thus far, only a small number of patients have been sampled, and no conclusive results are yet available. While some success has been had thus far with the drug, AHC patients have been known to respond well initially to other drugs, but then the effectiveness will decline over time. Currently, sodium oxybate is used as a narcolepsy-cataplexy treatment, though in the past it has been used controversially in nutritional supplements. This drug was chosen to test because of a possible link between the causes of narcolepsy-cataplexy and AHC.
NMS is a medical emergency and can lead to death if untreated. The first step is to stop the antipsychotic medication and treat the hyperthermia aggressively, such as with cooling blankets or ice packs to the axillae and groin. Supportive care in an intensive care unit capable of circulatory and ventilatory support is crucial. The best pharmacological treatment is still unclear. Dantrolene has been used when needed to reduce muscle rigidity, and more recently dopamine pathway medications such as bromocriptine have shown benefit.
Amantadine is another treatment option due to its dopaminergic and anticholinergic effects.
Apomorphine may be used however its use is supported by little evidence. Benzodiazepines may be used to control . Highly elevated blood myoglobin levels can result in kidney damage, therefore aggressive intravenous hydration with diuresis may be required. When recognized early NMS can be successfully managed; however, up to 10% of cases can be fatal.
Should a patient subsequently require an antipsychotic, trialing a low dose of a low-potency atypical antipsychotic is recommended.
Almost all patients respond positively to antiepileptic (anticonvulsant) drugs. One of the drugs most often mentioned in the literature is carbamazepine, and is the most widely used drug for treating PKD. Other anticonvulsants like valproic acid, phenytoin and clonazepam are common alternatives. Other categories of drugs have also been used, such as dopamine affecting drugs like Levodopa or Tetrabenazine. Individuals with the disorder can also modify their behavior to lessen their attacks without the influence of drug therapy. For example, decreasing stress to avoid precipitants can help patients decrease the number of attacks. In addition, avoiding any sudden movements can also prevent an attack. In order to prevent an attack, some individuals use their auras as a warning, while others purposefully perform slow gestures or movements prior to a triggering movement. Many, if not most, individuals end up growing out of the attacks with age, even without medicinal therapy, but some patients will go back to having attacks after a period of remission. In regards to secondary PKD, treatment of the primary condition can lessen the PKD attacks in those individuals.
Treatment for PKND is more difficult than other Paroxysmal Dyskinesias. The majority of patients experience some relief from low dosages of clonazepam, a muscle relaxant and anticonvulsant. Similar to PKD, avoidance of stress, excitement, and fatigue will lower the frequency of PNKD attacks. Many patients also avoid known methyglyoxal containing foods and beverages such as alcohol, coffee, tea, and chocolate.
Depending on subtype, many patients find that acetazolamide therapy is useful in preventing attacks. In some cases, persistent attacks result in tendon shortening, for which surgery is required.
Carbamazepine is at least partly effective at reducing the number or severity of attacks in the majority of PEPD patients. High doses of this drug may be required, perhaps explaining the lack of effect in some individuals. While other anti-epileptic drugs, gabapentin and topiramate, have limited effect in some patients, they have not been shown to be generally effective. Opiate derived analgesics are also largely ineffective, with only sporadic cases of beneficial effect.
As there appeared to be a connection with PED and mutated GLUT1 transporters a possible treatment was looking at changing patients diets. A common treatment for another disorder with a mutated GLUT1 transporter is the ketogenic diet. The diet is a strict 3:1 ratio of fat (3) to protein and carbohydrates (1). This diet is thought to help restore the unbalance created by the decreased amount of glucose in the brain caused by the faulty GLUT1 transporter. This diet was administered to three patients who had been screened and found to have mutation in their SLC2A genes coding for GLUT1 and were experiencing PED symptoms. All three showed benefit from this treatment and a reduction in their PED episodes. They were able to exercise and run long distances for the first time in their lives. No other studies have been performed using this diet as many patients feel the advantages of the diet do not outweigh its disadvantages.
As some cases have noted that patients were able to alleviate or lessen their PED attacks with a sugary snack, another diet that was tried on patients was one rich in carbohydrates with additional frequent carbohydrate-containing snacks. Four patients with reported PED symptoms were put on this diet but no observable improvements were noted and in fact one patient even complained of worsening symptoms.
Additionally it has been observed that levodopa may reduce some symptoms associated with PED. This may demonstrate that PED is a precursor to Parkinson's disease. Acetazolamide was beneficial to some patients, but also worsened symptoms in others. Additionally, a modified version of the Atkin's diet helped to regulate glucose levels in the CSF. Patients with PED associated with insulinomas appeared to have symptoms resolved after consuming sugary drinks. Currently, there are no drugs that are particularly useful in completely curing all symptoms.
Lorazepam and clonazepam are front line treatment for severe convulsions, belonging to the benzodiazepine class of medications.
Anticonvulsants are the most successful medication in reducing and preventing seizures from reoccurring. The goal of these medications in being able to reduce the reoccurrence of seizures is to be able to limit the amount of rapid and extensive firing of neurons so that a focal region of neurons cannot become over-activated thereby initiating a seizure. Although anticonvulsants are able to reduce the amount of seizures that occur in the brain, no medication has been discovered to date that is able to prevent the development of epilepsy following a head injury. There are a wide range of anticonvulsants that have both different modes of action and different abilities in preventing certain types of seizures. Some of the anticonvulsants that are prescribed to patients today include: Carbamazepine (Tegretol), Phenytoin (Dilantin Kapseals), Gabapentin (Neurontin), Levetiracetam (Keppra), Lamotrigine (Lamictal), Topiramate (Topamax), Tiagabine (Gabitril), Zonisamide (Zonegran) and Pregabalin (Lyrica).
Proper treatment of autonomic dysreflexia involves administration of anti-hypertensives along with immediate determination and removal of the triggering stimuli. Often, sitting the patient up and dangling legs over the bedside can reduce blood pressures below dangerous levels and provide partial symptom relief. Tight clothing and stockings should be removed. Straight catheterization of the bladder every 4 to 6 hrs, or relief of a blocked urinary catheter tube may resolve the problem. The rectum should be cleared of stool impaction, using anaesthetic lubricating jelly. If the noxious precipitating trigger cannot be identified, drug treatment is needed to decrease elevating intracranial pressure until further studies can identify the cause.
Drug treatment includes the rapidly acting vasodilators, including sublingual nitrates or oral clonidine. Ganglionic blockers are also used to control sympathetic nervous system outflow. Topical nitropaste is a convenient and safe treatment—an inch or two can be applied to the chest wall, and wiped off when blood pressures begin to normalize. Autonomic dysreflexia is abolished temporarily by spinal or general anaesthesia. These treatments are used during obstetric delivery of a woman with autonomic dysreflexia.
No known treatment for BPT currently exists. However, the condition it is self-limiting and resolves after about eighteen months.
The treatment of dysautonomia can be difficult; since it is made up of many different symptoms, a combination of drug therapies is often required to manage individual symptomatic complaints. Therefore, if an autoimmune neuropathy is the case, then treatment with immunomodulatory therapies is done, or if diabetes mellitus is the cause, control of blood glucose is important. Treatment can include proton-pump inhibitors and H2 receptor antagonists used for digestive symptoms such as acid reflux.
For the treatment of genitourinary autonomic neuropathy medications may include sildenafil (a guanine monophosphate type-5 phosphodiesterase inhibitor). For the treatment of hyperhidrosis, anticholinergic agents such as trihexyphenidyl or scopolamine can be used, also intracutaneous injection of botulinum toxin type A can be used for management in some cases.
Balloon angioplasty, a procedure referred to as transvascular autonomic modulation, is specifically not approved for the treatment of autonomic dysfunction.
A ten-patient study conducted by Pareja et al. found that all patients diagnosed with CPH were responsive to indomethacin and were able to completely control their symptoms. Doses of the drug ranged from 25 mg per day to 150 mg per day with a median dose of 75 mg per 24-hour period.
Almost all cases of CPH respond positively and effectively to indometacin, but as much as 25 percent of patients discontinued use of the drug due to adverse side effects, namely complications in the gastrointestinal tract.
According to a case study by Milanlioglu et al., 100mg of lamotrigine, an antiepileptic drug, administered twice daily alleviated all painful symptoms. No side effects were noted after two months of treatment. Dosage of lamotrigine was decreased to 50mg a day after the first two months, and no symptoms or side-effects were recorded after a three-month followup.
Use of topiramate has also been found to be an effective treatment for CPH, but cluster headache medications have been found to have little effect.
Harlequin syndrome is not debilitating so treatment is not normally necessary. In cases where the individual may feel socially embarrassed, contralateral sympathectomy may be considered, although compensatory flushing and sweating of other parts of the body may occur. In contralateral sympathectomy, the nerve bundles that cause the flushing in the face are interrupted. This procedure causes both sides of the face to no longer flush or sweat. Since symptoms of Harlequin syndrome do not typically impair a person’s daily life, this treatment is only recommended if a person is very uncomfortable with the flushing and sweating associated with the syndrome.
Ketamine, a dissociative anesthetic, appears promising as a treatment for complex regional pain syndrome. It may be used in low doses if other treatments have not worked. No benefit on either function or depression, however, has been seen.
Tentative evidence supports the use of bisphosphonates, calcitonin, and ketamine. Doing nerve blocks with guanethidine appears to be harmful. Evidence for sympathetic nerve blocks generally is insufficient to support their use. Intramuscular botulinum injections may benefit people with symptoms localized to one extremity.
Benign paroxysmal torticollis disappears in the early years of life with no medical intervention.
However, some cases of benign paroxysmal torticollis cases can evolve into benign paroxysmal vertigo of childhood, migrainous vertigo or typical migraines.
The cause of autonomic dysreflexia itself can be life-threatening, and must also be completely investigated and treated appropriately to prevent unnecessary morbidity and mortality.
The Consortium for Spinal Cord Medicine has developed evidence-based clinical practice guidelines for the management of autonomic dysreflexia in adults, children, and pregnant women. There is also a consumer version of this guideline.
The prognosis is best when identified early and treated aggressively. In these cases NMS is not usually fatal. In previous studies the mortality rates from NMS have ranged from 20%–38%; however, in the last two decades, mortality rates have fallen below 10% due to early recognition and improved management. Re-introduction to the drug that originally caused NMS to develop may also trigger a recurrence, although in most cases it does not.
Memory impairment is a consistent feature of recovery from NMS, and usually temporary, though in some cases, may become persistent.
For secondary erythromelalgia, treatment of the underlying primary disorder is the most primary method of treatment. Although aspirin has been thought to reduce symptoms of erythromelalgia, it is rare to find evidence that this is effective. Mechanical cooling of the limbs by elevating them can help or managing the ambient environment frequently is often necessary constantly as flares occur due to sympathetic autonomic dysfunction of the capillaries. The pain that accompanies it is severe and treated separately (the pain is similar to CRPS, phantom limb or thalamic pain syndrome). Patients are strongly advised "not" to place the affected limbs in cold water to relieve symptoms when flaring occurs. It may seem a good idea, but it precipitates problems further down the line causing damage to the skin and ulceration often intractable due to the damaged skin. A possible reduction in skin damage may be accomplished by enclosing the flaring limb in a commonly available, thin, heat transparent, water impermeable, plastic food storage bag. The advice of a physician is advised depending on specific circumstances.
Primary erythromelalgia management is symptomatic, i.e. treating painful symptoms only. Specific management tactics include avoidance of attack triggers such as: heat, change in temperature, exercise or over exertion, alcohol and spicy foods. This list is by no means comprehensive as there are many triggers to set off a 'flaring' episode that are inexplicable. Whilst a cool environment is helpful in keeping the symptoms in control, the use of cold water baths is strongly discouraged. In pursuit of added relief sufferers can inadvertently cause tissue damage or death, i.e. necrosis. See comments at the end of the preceding paragraph regarding possible effectiveness of plastic food storage bags to avoid/reduce negative effects of submersion in cold water baths.
One clinical study has demonstrated the efficacy of IV lidocaine or oral mexilitine, though it should be noted that differences between the primary and secondary forms were not studied. Another trial has shown promise for misoprostol, while other have shown that gabapentin, venlafaxine and oral magnesium may also be effective, but no further testing was carried out as newer research superseded this combination.
Strong anecdotal evidence from EM patients shows that a combination of drugs such as duloxetine and pregabalin is an effective way of reducing the stabbing pains and burning sensation symptoms of erythromelalgia in conjunction with the appropriate analgesia. In some cases, antihistamines may give some relief. Most people with erythromelalgia never go into remission and the symptoms are ever present at some level, whilst others get worse, or the EM is eventually a symptom of another disease such as systemic scleroderma.
Some suffering with EM are prescribed ketamine topical creams as a way of managing pain on a long term basis. Feedback from some EM patients has led to reduction in usage as they believe it is only effective for short periods.
Living with erythromelalgia can result in a deterioration in quality of life resulting in the inability to function in a work place, lack of mobility, depression, and is socially alienating; much greater education of medical practitioners is needed. As with many rare diseases, many people with EM end up taking years to get a diagnosis and to receive appropriate treatment.
Research into the genetic mutations continues but there is a paucity of clinical studies focusing on living with erythromelalgia. There is much urgency within pharmaceutical companies to provide a solution to those who suffer with pain such as that with erythromelalgia.