Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Medication (to prevent spasms) or Sphincterotomy (surgical procedure to cut the muscle) are the standard treatments for sphincter of Oddi dysfunction. One or the other may be better based on the classification of the condition.
Infantile pyloric stenosis is typically managed with surgery; very few cases are mild enough to be treated medically.
The danger of pyloric stenosis comes from the dehydration and electrolyte disturbance rather than the underlying problem itself. Therefore, the baby must be initially stabilized by correcting the dehydration and the abnormally high blood pH seen in combination with low chloride levels with IV fluids. This can usually be accomplished in about 24–48 hours.
Intravenous and oral atropine may be used to treat pyloric stenosis. It has a success rate of 85-89% compared to nearly 100% for pyloromyotomy, however it requires prolonged hospitalization, skilled nursing and careful follow up during treatment. It might be an alternative to surgery in children who have contraindications for anesthesia or surgery, or in children whose parents do not want surgery.
The definitive treatment of pyloric stenosis is with surgical pyloromyotomy known as Ramstedt's procedure (dividing the muscle of the pylorus to open up the gastric outlet). This surgery can be done through a single incision (usually 3–4 cm long) or laparoscopically (through several tiny incisions), depending on the surgeon's experience and preference.
Today, the laparoscopic technique has largely supplanted the traditional open repairs which involved either a tiny circular incision around the navel or the Ramstedt procedure. Compared to the older open techniques, the complication rate is equivalent, except for a markedly lower risk of wound infection. This is now considered the standard of care at the majority of children's hospitals across the US, although some surgeons still perform the open technique. Following repair, the small 3mm incisions are hard to see.
The vertical incision, pictured and listed above, is no longer usually required, though many incisions have been horizontal in the past years.
Once the stomach can empty into the duodenum, feeding can begin again. Some vomiting may be expected during the first days after surgery as the gastrointestinal tract settles. Rarely, the myotomy procedure performed is incomplete and projectile vomiting continues, requiring repeat surgery. Pyloric stenosis generally has no long term side-effects or impact on the child's future.
The definitive treatment for Heyde's syndrome is surgical replacement of the aortic valve. Recently, it has been proposed that transcatheter aortic valve implantation (TAVI) can also be used for definitive management. Direct surgical treatment of the bleeding (e.g. surgical resection of the bleeding portion of the bowel) is only rarely effective.
Medical management of symptoms is possible also, although by necessity temporary, as definitive surgical management is required to bring levels of von Willebrand factor back to normal. In severe bleeding, blood transfusions and IV fluid infusions can be used to maintain blood pressure. In addition, desmopressin (DDAVP) is known to be effective in people with von Willebrand's disease, including people with valvular heart disease. Desmopressin stimulates release of von Willebrand factor from blood vessel endothelial cells by acting on the V2 receptor, which leads to decreased breakdown of Factor VIII. Desmopressin is thus sometimes used directly to treat mild to moderate acquired von Willebrand's disease and is an effective prophylactic agent for the reduction of bleeding during heart valve replacement surgery.
It is initially treated with medications, including diuretics, and medications for blood pressure control. When high-grade renal artery stenosis is documented and blood pressure cannot be controlled with medication, or if renal function deteriorates, surgery may be resorted to. The most commonly used procedure is a minimally-invasive angioplasty with or without stenting. It is unclear if this approach yields better results than the use of medications alone. It is a relatively safe procedure. If all else fails and the kidney is thought to be worsening hypertension and revascularization with angioplasty or surgery does not work, then surgical removal of the affected kidney (nephrectomy) may significantly improve high blood pressure.
If restenosis occurs without a stent, it is usually treated with more angioplasty. Once restenosis has occurred and been treated by angioplasty, the chances of restenosis occurring again are increased by a factor of 2. This treatment is also used if restenosis occurs at either the proximal or distal end of the stent.
If restenosis occurs within a stent (also known as in-stent stenosis), it may be treated with repeated angioplasty and insertion of another stent inside the original, sometimes with a drug-eluting stent.
Over the past 5 years, ISR is preferentially treated with a drug eluting balloon, which is a balloon coated with the same anticancer drugs that prevent restenosis. The Balloon avoids the need for a double layer of metal which is used when an in-stent restenosis is treated with another stent within the original stent
Alternative treatments include brachytherapy, or intracoronary radiation. The radiation kills cells and inhibits tissue growth (similar to a patient undergoing cancer therapy).
If the tumor is found incidentally in an asymptomatic person, the treatment approach is controversial. Certainly a conservative approach is warranted in certain individuals. If the tumor is large and pedunculated, a case may be made for surgical excision prior to symptoms developing due to the higher risk of embolism. However, this is still considered controversial.
If the papillary fibroelastoma is associated with symptoms, surgical excision is generally recommended for relief of symptoms. A minimally invasive approach may be possible if the tumor involves the aortic valve or right atrium. In the case of aortic valve involvement, excision of the tumor is often valve-sparing, meaning that replacement of the valve with a prosthetic valve is not necessary. Repair of the native valve with a pericardial patch has been described.
The general purpose of the following treatment methods is to divert the flow of CSF from the blocked aqueduct, which is causing the buildup of CSF, and allow the flow to continue. Another goal of these treatments is to reduce the stress within the ventricles. Studies have not shown that either of the following treatments results in a higher IQ of the patient, and there is not statistical difference in a patient's quality of life based on treatment method. The following treatment methods are not used for aqueductal stenosis caused by tumor compression; if the obstruction is a direct result of tumor compression, CSF flow may be normalized by the surgical removal of the tumor.
Acute decompensated heart failure due to AS may be temporarily managed by an intra-aortic balloon pump while pending surgery. In those with high blood pressure nitroprusside may be carefully used. Phenylephrine may be used in those with very low blood pressure.
Angioplasty with or without stenting is the best option for the treatment of renal artery stenosis due to fibromuscular dysplasia.
For infants and children, balloon valvuloplasty, where a balloon is inflated to stretch the valve and allow greater flow, may also be effective. In adults, however, it is generally ineffective, as the valve tends to return to a stenosed state. The surgeon will make a small incision at the top of the person's leg and proceed to insert the balloon into the artery. The balloon is then advanced up to the valve and is inflated to stretch the valve open.
Tricuspid valve stenosis itself usually doesn't require treatment. If stenosis is mild, monitoring the condition closely suffices. However, severe stenosis, or damage to other valves in the heart, may require surgical repair or replacement.
The treatment is usually by surgery (tricuspid valve replacement) or percutaneous balloon valvuloplasty. The resultant tricuspid regurgitation from percutaneous treatment is better tolerated than the insufficiency occurring during mitral valvuloplasty.
The optimal management of laryngotracheal stenosis is not well defined, depending mainly on the type of the stenosis.
General treatment options include
1. Tracheal dilation using rigid bronchoscope
2. Laser surgery and endoluminal stenting
3. Tracheal resection and laryngotracheal reconstructionr
Tracheal is used to temporarily enlarge the airway. The effect of dilation typically lasts from a few days to 6 months. Several studies have shown that as a result of mechanical dilation (used alone) may occur a high mortality rate and a rate of recurrence of stenosis higher than 90%.
Thus, many authors treat the stenosis by endoscopic excision with laser (commonly either the carbon dioxide or the neodymium: yttrium aluminum garnet laser) and then by using bronchoscopic dilatation and prolonged stenting with a T-tube (generally in silicone).
There are differing opinions on treating with laser surgery.
In very experienced surgery centers, tracheal resection and reconstruction (anastomosis complete end-to-end with or without laryngotracheal temporary stent to prevent airway collapse) is currently the best alternative to completely cure the stenosis and allows to obtain good results. Therefore, it can be considered the gold standard treatment and is suitable for almost all patients.
The narrowed part of the trachea will be cut off and the cut ends of the trachea sewn together with sutures. For stenosis of length greater than 5 cm a stent may be required to join the sections.
Late June or early July 2010, a new potential treatment was trialed at Great Ormond Street Hospital in London, where Ciaran Finn-Lynch (aged 11) received a transplanted trachea which had been injected with stem cells harvested from his own bone marrow. The use of Ciaran's stem cells was hoped to prevent his immune system from rejecting the transplant, but there remain doubts about the operation's success, and several later attempts at similar surgery have been unsuccessful.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
In the first stage of restenosis, administering anti-platelet drugs (called IIb/IIIa inhibitors) immediately after surgery greatly reduces the chance of a thrombosis occurring.
Drug-eluting stents are now being trialled in Europe, Canada and the USA, as well as in Asia-Pacific. These stents are coated with pharmaceuticals that inhibit tissue growth and thus reduce the risk of restenosis from scar-tissue and cell proliferation.
There has been some success with these new stents in reducing the occurrence of restenosis, with clinical studies showing an incidence rate of 5% or lower.
An extracranial shunt is essentially a sturdy tube with a catheter on one end to drain the third ventricle. The shunt also has a valve which serves to maintain one-way flow of the CSF and regulates the flow rate. The end with the catheter is placed in the third ventricle to drain the excess CSF and the other end is placed in the peritoneal cavity or atrium of the heart (making it a ventriculoperitoneal or ventriculoatrial shunt, respectively). The excess CSF which is diverted to a cavity is then reabsorbed by the surrounding tissue where it is drained to.
The procedure to insert this device is a technically straightforward endoscopic surgery with a low mortality rate (essentially 0% mortality since the 1970s). If the shunt has an adjustable valve the current method of setting the valve pressure is to choose one setting, observe the patient to see if CSF flow improves and the symptoms lessen over time, and adjust the pressure setting as needed if improvement isn't seen. For example, if there is not enough CSF flow, another surgery is performed to lower the valve pressure so that less force needs to be applied to open the valve and thereby drain more CSF.
This treatment method has several possible problems with it (with a 50% failure rate in 2 years), and unfortunately shunt malfunctions and associated complications cause a death rate of 1.2% per year. Problems which can necessitate a secondary surgery to fix them include: mechanical failure, incorrect catheter size, inappropriate valve drainage pressure, and infection.
- Inappropriate valve pressure can lead to "overdraining" or "underdraining", both of which should be treated by adjusting the valve pressure. Overdraining occurs when the valve pressure is too low and CSF flows out of the third ventricle too quickly. The ventricle then collapses and blood vessles can be torn in the process. This in turn can lead to headache, hemorrhage, or slit ventricle syndrome. Underdraining occurs when the valve pressure is too high and CSF flows out too slowly. This results in symptoms of hydrocephalus as the CSF is still collecting rather than being absorbed or diverted.
- Risk of infection is due to the fact that a foreign object is being introduced into the body. Infection can have symptoms of fever and soreness of the neck and shoulders.
Treatment is not necessary in asymptomatic patients.
The treatment options for mitral stenosis include medical management, mitral valve replacement by surgery, and percutaneous mitral valvuloplasty by balloon catheter.
The indication for invasive treatment with either a mitral valve replacement or valvuloplasty is NYHA functional class III or IV symptoms.
Another option is balloon dilatation. To determine which patients would benefit from percutaneous balloon mitral valvuloplasty, a scoring system has been developed. Scoring is based on 4 echocardiographic criteria: leaflet mobility, leaflet thickening, subvalvar thickening, and calcification. Individuals with a score of ≥ 8 tended to have suboptimal results. Superb results with valvotomy are seen in individuals with a crisp opening snap, score < 8, and no calcium in the commissures.
Treatment also focuses on concomitant conditions often seen in mitral stenosis:
- Any angina is treated with short-acting nitrovasodilators, beta-blockers and/or calcium blockers
- Any hypertension is treated aggressively, but caution must be taken in administering beta-blockers
- Any heart failure is treated with digoxin, diuretics, nitrovasodilators and, if not contraindicated, cautious inpatient administration of ACE inhibitors
MR Imaging is best suited to evaluate patients with Shone's complex. Routine blood tests should be done prior to cardiac catheterization. The surgeons will repair the mitral valve and al the partial surgical removal of supramitral ring is done. This surgical method is preferred to the valve replacement procedure.
Classifying cardiac lesions in infants is quite difficult, and accurate diagnosis is essential. The diagnosis of Shone’s complex requires an ultrasound of the heart (echocardiogram) and a cardiac catheterization procedure, that is, insertion of a device through blood vessels in the groin to the heart that helps identify heart anatomy.
Potential non-surgical treatments include:
- Education about the course of the condition and how to relieve symptoms
- Medicines to relieve pain and inflammation, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs)
- Exercise, to maintain or achieve overall good health, aerobic exercise, such as riding a stationary bicycle, which allows for a forward lean, walking, or swimming can relieve symptoms
- Weight loss, to relieve symptoms and slow progression of the stenosis
- Physical therapy, to provide education, instruction, and support for self-care; physical therapy instructs on stretching and strength exercises that may lead to a decrease in pain and other symptoms
The treatment of mitral insufficiency depends on the acuteness of the disease and whether there are associated signs of hemodynamic compromise.
In acute MI secondary to a mechanical defect in the heart (i.e., rupture of a papillary muscle or chordae tendineae), the treatment of choice is mitral valve surgery. If the patient is hypotensive prior to the surgical procedure, an intra-aortic balloon pump may be placed in order to improve perfusion of the organs and to decrease the degree of MI.
If the individual with acute MI is normotensive, vasodilators may be of use to decrease the afterload seen by the left ventricle and thereby decrease the regurgitant fraction. The vasodilator most commonly used is nitroprusside.
Individuals with chronic MI can be treated with vasodilators as well to decrease afterload. In the chronic state, the most commonly used agents are ACE inhibitors and hydralazine. Studies have shown that the use of ACE inhibitors and hydralazine can delay surgical treatment of mitral insufficiency. The current guidelines for treatment of MI limit the use of vasodilators to individuals with hypertension, however. Any hypertension is treated aggressively, e.g. by diuretics and a low-sodium diet. In both hypertensive and normotensive cases, digoxin and antiarrhythmics are also indicated. Also, chronic anticoagulation is given where there is concomitant mitral valve prolapse or atrial fibrillation. In general, medical therapy is non-curative and is used for mild-to-moderate regurgitation or in patients unable to tolerate surgery.
Surgery is curative of mitral valve regurgitation. There are two surgical options for the treatment of MI: mitral valve replacement and mitral valve repair. Mitral valve repair is preferred to mitral valve replacement where a repair is feasible as bioprosthetic replacement valves have a limited lifespan of 10 to 15 years, whereas synthetic replacement valves require ongoing use of blood thinners to reduce the risk of stroke. There are two general categories of approaches to mitral valve repair: Resection of the prolapsed valvular segment (sometimes referred to as the 'Carpentier' approach), and installation of artificial chordae to "anchor" the prolapsed segment to the papillary muscle (sometimes referred to as the 'David' approach). With the resection approach, any prolapsing tissue is resected, in effect removing the hole through which the blood is leaking. In the artificial chordae approach, ePTFE (expanded polytetrafluoroethylene, or Gore-Tex) sutures are used to replace the broken or stretched chordae tendonae, bringing the natural tissue back into the physiological position, thus restoring the natural anatomy of the valve. With both techniques, an annuloplasty ring is typically secured to the annulus, or opening of the mitral valve, to provide additional structural support. In some cases, the "double orifice" (or 'Alfieri') technique for mitral valve repair, the opening of the mitral valve is sewn closed in the middle, leaving the two ends still able to open. This ensures that the mitral valve closes when the left ventricle pumps blood, yet allows the mitral valve to open at the two ends to fill the left ventricle with blood before it pumps. In general, mitral valve surgery requires "open-heart" surgery in which the heart is arrested and the patient is placed on a heart-lung machine (cardiopulmonary bypass). This allows the complex surgery to proceed in a still environment.
Due to the physiological stress associated with open-heart surgery, elderly and very sick patients may be subject to increased risk, and may not be candidates for this type of surgery. As a consequence, there are attempts to identify means of correcting MI on a beating heart. The Alfieri technique for instance, has been replicated using a percutaneous catheter technique, which installs a "MitraClip" device to hold the middle of the mitral valve closed.
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
Potential surgical treatments include:
- Anterior cervical discectomy and fusion - A surgical treatment of nerve root or spinal cord compression by decompressing the spinal cord and nerve roots of the cervical spine with a discectomy in order to stabilize the corresponding vertebrae.
- Laminoplasty - A surgical procedure relieve pressure on the spinal cord by cutting the lamina on both sides of the affected vertebrae (cutting through on one side and merely cutting a groove on the other) and then "swinging" the freed flap of bone open.
- Laminectomy - A surgical procedure in which the lamina of the vertebra is removed or trimmed to widen the spinal canal and create more space for the spinal nerves and thecal sac.
The treatment of choice for main-duct IPMNs is resection due to approximately 50% chance of malignancy. Side-branch IPMNs are occasionally monitored with regular CT or MRIs, but most are eventually resected, with a 30% rate of malignancy in these resected tumors. Survival 5 years after resection of an IPMN without malignancy is approximately 80%, 85% with malignancy but no lymph node spread and 0% with malignancy spreading to lymph nodes. Surgery can include the removal of the head of the pancreas (a pancreaticoduodenectomy), removal of the body and tail of the pancreas (a distal pancreatectomy), or rarely removal of the entire pancreas (a total pancreatectomy). In selected cases the surgery can be performed using minimally invasive techniques such as laparoscopy or robotic surgery. A study using Surveillance, Epidemiology, and End Result Registry (SEER) data suggested that increased lymph node counts harvested during the surgery were associated with better survival in invasive IPMN patients.
Mitral valvuloplasty is a minimally invasive therapeutic procedure to correct an uncomplicated mitral stenosis by dilating the valve using a balloon.
Under local anaesthetic, a catheter with a special balloon is passed from the right femoral vein, up the inferior vena cava and into the right atrium. The interatrial septum is punctured and the catheter passed into the left atrium using a "trans-septal technique." The balloon is sub-divided into 3 segments and is dilated in 3 stages. First, the distal portion (lying in the left ventricle) is inflated and pulled against the valve cusps. Second, the proximal portion is dilated, in order to fix the centre segment at the valve orifice. Finally, the central section is inflated, this should take no longer than 30 seconds, since full inflation obstructs the valve and causes congestion, leading to circulatory arrest and flash pulmonary edema.
With careful patient pre-selection, percutaneous balloon mitral valvuloplasty (PBMV) is associated with good success rates and a low rate of complications. By far the most serious adverse event is the occurrence of acute severe mitral regurgitation. Severe mitral regurgitation usually results from a tear in one of the valve leaflets or the subvalvular apparatus. It can lead to pulmonary edema and hemodynamic compromise, necessitating urgent surgical mitral valve replacement.
Other serious complications with PBMV usually relate to the technique of trans-septal puncture (TSP). The ideal site for TSP is the region of the fossa ovalis in the inter-atrial septum. Occasionally, however, the sharp needle used for TSP may inadvertently traumatize other cardiac structures, leading to cardiac tamponade or serious blood loss.
Although the immediate results of PBMV are often quite gratifying, the procedure does not provide permanent relief from mitral stenosis. Regular follow-up is mandatory, to detect restenosis. Long-term follow-up data from patients undergoing PBMV indicates that up to 70-75% individuals can be free of restenosis 10 years following the procedure. The number falls to about 40% 15 years post-PBMV.
The Norwood procedure is a procedure to correct fetal aortic stenosis that occurs after birth. This typically consists of three surgeries creating and removing shunts. The atrial septum is removed, the aortic arch is reconstructed to remove any hypoplasia, and then the main pulmonary artery is connected into this reconstructed arch, resulting in the right ventricle ejecting directly into systemic circulation. In the end, the right ventricle is pumping blood to systemic circulation and to the lungs. However, this procedure carries a very high risk of failure and the patient will likely require a heart transplant.
Another treatment option is to correct the stenosis in utero. In this procedure, fetal positioning is crucial. It is important that the left chest is located anteriorly, and that there are no limbs between the uterine wall and the apex of the left ventricle. The LV apex needs to be within 9 cm of the abdominal wall and the left ventricle outflow track has to be parallel to the intended cannula course in order for the wire to be blindly directed at the aortic valve. A 11.5 cm long, 19-gauge cannula and stylet needle passes through the mother’s abdomen, uterine wall, and fetal chest wall into the left ventricle of the fetus. Then a 0.014 inch guide wire is passed across the stenosis aortic valve, where a balloon is inflated to stretch the aortic annulus.
An alternative to the Norwood procedure is known as the hybrid procedure, was developed in 2008. In the hybrid procedure, bilateral pulmonary artery bands are positioned to limit pulmonary flow while, at the same time, placing a stent in the ductus arteriosus to hold it open. This maintains the connection between the aorta and the systemic circulation. A balloon atrial septostomy is also done. This ensures that there is enough of a connection between the two atria of the heart to provide open blood flow and mixing of oxygen rich and poor blood This procedure spares the baby from undergoing open heart surgery until they are older. They typically come back at 4–6 months of age when they are stronger for the open heart surgery.