Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotics are commonly used as a curing method for pancreatic abscesses although their role remains controversial. Prophylactic antibiotics are normally chosen based on the type of flora and the degree of antibiotic penetration into the abscess. Pancreatic abscesses are more likely to host enteric organisms and pathogens such as "E. coli", "Klebsiella pneumonia", "Enterococcus faecalis", "Staphylococcus aureus", "Pseudomonas aeruginosa", "Proteus mirabilis", and "Streptococcus" species. Medical therapy is usually given to people whose general health status does not allow surgery. On the other hand, antibiotics are not recommended in patients with pancreatitis, unless the presence of an infected abscess has been proved.
Although there have been reported cases of patients who were given medical treatment and survived, primary drainage of the abscess is the main treatment used to cure this condition. Drainage usually involves a surgical procedure. It has been shown that CT-guided drainage brought inferior results than open drainage. Hence, open surgical procedure is preferred to successfully remove the abscess. However, CT-guided drainage is the option treatment for patients who may not tolerate an open procedure. Endoscopic treatment is at the same time a treatment option that increased in popularity over the last years.
The outlook is generally based on the severity of the infection. It is however a severe complication which may result in the death of the patient if the appropriate treatment is not administered. Patients are at risk of sepsis and multiple organ failure and in cases in which the infected abscess is not removed through surgery, the mortality rate can reach 100%.
Most people who have an uncomplicated skin abscess should not use antibiotics. Antibiotics in addition to standard incision and drainage is recommended in persons with severe abscesses, many sites of infection, rapid disease progression, the presence of cellulitis, symptoms indicating bacterial illness throughout the body, or a health condition causing immunosuppression. People who are very young or very old may also need antibiotics. If the abscess does not heal only with incision and drainage, or if the abscess is in a place that is difficult to drain such as the face, hands, or genitals, then antibiotics may be indicated.
In those cases of abscess which do require antibiotic treatment, "Staphylococcus aureus" bacteria is a common cause and an anti-staphylococcus antibiotic such as flucloxacillin or dicloxacillin is used. The Infectious Diseases Society of America advises that the draining of an abscess is not enough to address community-acquired methicillin-resistant "Staphylococcus aureus" (MRSA), and in those cases, traditional antibiotics may be ineffective. Alternative antibiotics effective against community-acquired MRSA often include clindamycin, doxycycline, minocycline, and trimethoprim-sulfamethoxazole. The American College of Emergency Physicians advises that typical cases of abscess from MRSA get no benefit from having antibiotic treatment in addition to the standard treatment. If the condition is thought to be cellulitis rather than abscess, consideration should be given to possibility of strep species as cause that are still sensitive to traditional anti-staphylococcus agents such as dicloxacillin or cephalexin in patients able to tolerate penicillin. Antibiotic therapy alone without surgical drainage of the abscess is seldom effective due to antibiotics often being unable to get into the abscess and their ineffectiveness at low pH levels.
Culturing the wound is not needed if standard follow-up care can be provided after the incision and drainage. Performing a wound culture is unnecessary because it rarely gives information which can be used to guide treatment.
The abscess should be inspected to identify if foreign objects are a cause, which may require their removal. If foreign objects are not the cause, incising and draining the abscess is standard treatment.
In critical areas where surgery presents a high risk, it may be delayed or used as a last resort. The drainage of a lung abscess may be performed by positioning the patient in a way that enables the contents to be discharged via the respiratory tract. Warm compresses and elevation of the limb may be beneficial for a skin abscess.
Abdominal pain is often the predominant symptom in patients with acute pancreatitis and should be treated with analgesics.
Opioids are safe and effective at providing pain control in patients with acute pancreatitis. Adequate pain control requires the use of intravenous opiates, usually in the form of a patient-controlled analgesia pump. Hydromorphone or fentanyl (intravenous) may be used for pain relief in acute pancreatitis. Fentanyl is being increasingly used due to its better safety profile, especially in renal impairment. As with other opiates, fentanyl can depress respiratory function. It can be given both as a bolus as well as constant infusion.
Meperidine has been historically favored over morphine because of the belief that morphine caused an increase in sphincter of Oddi pressure. However, no clinical studies suggest that morphine can aggravate or cause pancreatitis or cholecystitis. In addition, meperidine has a short half-life and repeated doses can lead to accumulation of the metabolite normeperidine, which causes neuromuscular side effects and, rarely, seizures.
Anal abscesses are rarely treated with a simple course of antibiotics. In almost all cases surgery will need to take place to remove the abscess. Treatment is possible in an emergency room under local anesthesia, but it is highly preferred to be formally admitted to a hospital and to have the surgery performed in an operating room under general anesthesia.
Generally speaking, a fairly small but deep incision is performed close to the root of the abscess. The surgeon will allow the abscess to drain its exudate and attempt to discover any other related lesions in the area. This is one of the most basic types of surgery, and is usually performed in less than thirty minutes by the anal surgical team. Generally, a portion of the exudate is sent for microbiological analysis to determine the type of infecting bacteria. The incision is not closed (stitched), as the damaged tissues must heal from the inside toward the skin over a period of time.
The affected individual is often sent home within twenty-four hours of the surgery, and may be instructed to perform several 'sitz baths' per day, whereby a small basin (which usually fits over a toilet) is filled with warm water (and possibly, salts) and the affected area is soaked for a period of time. Another method of recovery involves the use of surgical packing, which is initially inserted by the surgical team, with redressing generally performed by hospital staff or a District Nurse (however, following the results of several double-blind studies, the effectiveness of surgical packing has come into question). During the week following the surgery, many patients will have some form of antibiotic therapy, along with some form of pain management therapy, consistent with the nature of the abscess.
The patient usually experiences an almost complete relief of the severe pain associated to his/her abscess upon waking from anesthesia; the pain associated with the opening and draining incision during the post-operative period is often mild in comparison.
RPA's frequently require surgical intervention. A tonsillectomy approach is typically used to access/drain the abscess, and the outcome is usually positive. Surgery in adults may be done without general anesthesia because there is a risk of abscess rupture during tracheal intubation. This could result in pus from the abscess aspirated into the lungs. In complex cases, an emergency tracheotomy may be required to prevent upper airway obstruction caused by edema in the neck.
High-dose intravenous antibiotics are required in order to control the infection and reduce the size of the abscess prior to surgery.
Chronic retropharyngeal abscess is usually secondary to tuberculosis and the patient needs to be started on anti-tubercular therapy as soon as possible.
The production of pancreatic enzymes is suppressed by restricting the patient's oral intake of food patient in conjunction with the use of long-acting somatostatin analogues. The patient's nutrition is maintained by total parenteral nutrition.
This treatment is continued for 2–3 weeks, and the patient is observed for improvement. If no improvement is seen, the patient may receive endoscopic or surgical treatment. If surgical treatment is followed, an ERCP is needed to identify the site of the leak.
Fistulectomy is done in which the involved part of the pancreas is also removed.
In the management of acute pancreatitis, the treatment is to stop feeding the patient, giving them nothing by mouth, giving intravenous fluids to prevent dehydration, and sufficient pain control. As the pancreas is stimulated to secrete enzymes by the presence of food in the stomach, having no food pass through the system allows the pancreas to rest. Approximately 20% of patients have a relapse of pain during acute pancreatitis. Approximately 75% of relapses occur within 48 hours of oral refeeding.
The incidence of relapse after oral refeeding may be reduced by post-pyloric enteral rather than parenteral feeding prior to oral refeeding. IMRIE scoring is also useful.
Pancreatic pseudocyst treatment should be aimed at avoiding any complication (1 in 10 cases become infected). They also tend to rupture, and have shown that larger cysts have a higher likelihood to become more symptomatic, even needing surgery. If no signs of infection are present, initial treatment can include conservative measures such as bowel rest (NPO), parenteral nutrition (TPN), and observation. Serum amylase levels can be trended. If symptoms do not improve by 6 weeks, surgical intervention may be appropriate.
In the event of surgery:
- Cystogastrostomy: In this surgical procedure a connection is created between the back wall of the stomach and the cyst such that the cyst drains into the stomach.
- Cystjejunostomy: In this procedure a connection is created between the cyst and the small intestine so that the cyst fluid directly into the small intestine.
- Cystduodenostomy: In this procedure a connection is created between the duodenum (the first part of the intestine) and the cyst to allow drainage of the cyst content into duodenum. The type of surgical procedure depends on the location of the cyst. For pseudocysts that occur in the head of the pancreas a cystduodenostomy is usually performed.
The treatment includes lowering the increased intracranial pressure and starting intravenous antibiotics (and meanwhile identifying the causative organism mainly by blood culture studies).
Hyperbaric oxygen therapy (HBO2 or HBOT) is indicated as a primary and adjunct treatment which provides four primary functions.
Firstly, HBOT reduces intracranial pressure. Secondly, high partial pressures of oxygen act as a bactericide and thus inhibits the anaerobic and functionally anaerobic flora common in brain abscess. Third, HBOT optimizes the immune function thus enhancing the host defense mechanisms and fourth, HBOT has been found to be of benefit when brain abscess is concomitant with cranial osteomyleitis.
Secondary functions of HBOT include increased stem cell production and up-regulation of VEGF which aid in the healing and recovery process.
Surgical drainage of the abscess remains part of the standard management of bacterial brain abscesses. The location and treatment of the primary lesion also crucial, as is the removal of any foreign material (bone, dirt, bullets, and so forth).
There are few exceptions to this rule: "Haemophilus influenzae" meningitis is often associated with subdural effusions that are mistaken for subdural empyemas. These effusions resolve with antibiotics and require no surgical treatment. Tuberculosis can produce brain abscesses that look identical to conventional bacterial abscesses on CT imaging. Surgical drainage or aspiration is often necessary to identify "Mycobacterium tuberculosis", but once the diagnosis is made no further surgical intervention is necessary.
CT guided stereotactic aspiration is also indicated in the treatment of brain abscess.
Treatment of hemosuccus pancreaticus depends on the source of the hemorrhage. If the bleeding is identified on angiography to be coming from a vessel that is small enough to occlude, embolization through angiography may stop the bleeding. Both coils in the end-artery and stents across the area of bleeding have been used to control the hemorrhage. However, the bleeding may be refractory to the embolization, which would necessitate surgery to remove the pancreas at the source of hemorrhage. Also, the cause of bleeding may be too diffuse to be treated with embolization (such as with pancreatitis or with pancreatic cancer). This may also require surgical therapy, and usually a distal pancreatectomy, or removal of the part of the pancreas from the area of bleeding to the tail, is required.
The treatment of invasive amoebiasis should be directed to all sites where "E. histolytica" may be present. Hence the ideal amoebicide should be able to act within the intestinal lumen, in the intestinal wall, and systemically, particularly in the liver.
Systemic amoebicidal drugs include emetine, dehydroemetine, chloroquine diphosphate, metronidazole, and tinidazole.
Treatment is by removing the pus, antibiotics, sufficient fluids, and pain medication. Steroids may also be useful. Admission to hospital is generally not needed.
Ipecac or ipecacuanha consists of the dried rhizome and roots of "Cephaelis ipecacuanha".
The medical virtues of ipecac are almost entirely due to the action of its alkaloids-emetine and cephaline. Till today, emetine remains one of the best drugs for treating amoebic liver abscess. It has a direct action on the trophozoites.
Its greater concentration and duration of action in the liver as compared to that in the intestinal wall explains its high efficacy in amoebic liver abscess and also its low parasitic cure rate for intestinal amoebiasis.
The drug is detoxicated and eliminated slowly. It may, therefore, produce cumulative effects. In man, emetine poisoning is characterized by muscular tremors, weakness and pain in the extremities which tend to persist until drug administration is stopped. Gastro-intestinal symptoms include nausea, vomiting and bloody diarrhoea. The latter may be mistaken for a recurrence of amoebic dysentery.
Many clinicians fear the occurrence of cardiac toxicity due to this drug and hence avoid using it. Serious cardiac toxicity, however, is rare. Both recovered with the treatment for heart failure and withdrawal of emetine. One patient who was given fifteen injections of emetine in a dose of 60 mgm per day, died.
Overdosage of emetine produces focal necrosis of cardiac muscle resulting in cardiac failure and sudden death.
Emetine, like digitalis may produce mild ST and T wave changes in the electrocardiogram which does not necessarily mean serious toxicity. In fact, they are encountered, though less commonly, after the use of chloroquine and metronidazole as well.
Toxic effects on the myocardium have been described even in doses generally considered safe. These are rise in pulse rate, fall in systolic blood pressure and ST-T changes in the electrocardiogram.
The other rare E.C.G. changes include deformity of QRS complexes, prolongation of PR interval, atrial premature beats, and atrial tachycardia. In adults, fatal cases have been reported with a total dose of 0.6 G. or less. The incidence of toxic heart damage greatly increases in patients with anaemia.
In patients having myocardial disease or marked hypertension, emetine can be used for amoebic liver abscess, as the benefits from it may outweigh possible hazards. This situation is unlikely to arise these days, as equally good alternative drugs like metronidazole are available. Patients receiving emetine should be monitored for changes in pulse, blood pressure and electrocardiography. Absolute bed rest during and several days after emetine therapy has been recommended, although we have often seen patients in whom no untoward reactions have occurred in spite of neglecting the above precaution.
Theoretically the use of emetine in children is not advised. However, in practice it has been used as discussed elsewhere. It should not be administered during pregnancy unless absolutely necessary.
Although emetine is undeniably moderately toxic, the risk of using it would be worth accepting in such a serious illness were it not for the fact that less toxic drugs like chloroquine and metronidazole are now available.
In practice, emetine still produces a more dramatic clinical response thanchloroquine or metronidazole. This point would score in favour of emetine in places where facilities for a proper diagnosis are not available and a therapeutic test remains as the only weapon with a practitioner.
Emetine should always be given deep intramuscularly or deep subcutaneously but never intravenously. The total dose in amoebic liver abscess should not exceed 650 mg or 10 mg/kg. This should be given over a period of 10 days in a dose of 6G65 mg. daily. A relapse rate of 7% follows one such course. Therefore, the treatment could be repeated after a period of 2–6 weeks. Of late such a need does not arise, as drug combinations are commonly used. When parenteral emetine is combined with oral chloroquine or two courses of emetine are given, the relapse rate can be brought down to 1 percent.
The infection is frequently penicillin resistant. There are a number of antibiotics options including amoxicillin/clavulanate, clindamycin, or metronidazole in combination with benzylpenicillin (penicillin G) or penicillin V. Piperacillin/tazobactam may also be used.
The treatment of pancreatitis is supportive and depends on severity. Morphine generally is suitable for pain control. There are no clinical studies to suggest that morphine can aggravate or cause pancreatitis or cholecystitis.
The treatment that is received for acute pancreatitis will depend on whether the diagnosis is for the mild form of the condition, which causes no complications, or the severe form, which can cause serious complications.
The treatment of mild acute pancreatitis is successfully carried out by admission to a general hospital ward. Traditionally, people were not allowed to eat until the inflammation resolved but more recent evidence suggests early feeding is safe and improves outcomes. Because pancreatitis can cause lung damage and affect normal lung function, oxygen is occasionally delivered through breathing tubes that are connected via the nose. The tubes can then be removed after a few days once it is clear that the condition is improving. Dehydration may result during an episode of acute pancreatitis, so fluids will be provided intravenously. Opioids may be used for the pain. Early feeding does not appear to cause problems and may result in an ability to leave hospital sooner.
When there is no pancreatic duct injury, typically hemostasis and surgical drainage are the main form of treatment. Surgical repair is undertaken when there is evidence or suspicion of ductal injury. The type of surgery depends on the degree of the injury and its proximity to the mesenteric blood vessels that serve the pancreas. When injuries are not close to the mesenteric vessels, a distal pancreatectomy may be done; this procedure preserves much of the pancreas and usually avoids loss of its endocrine and exocrine functions. In severe cases of pancreaticoduodenal injury, a pancreaticoduodenectomy can be used. Common complications after surgery include pancreatitis, pancreatic fistula, abscess, and pseudocyst formation. Initial management of hemorrhage includes controlling it by packing the wound.
Broadspectrum antibiotic to cover mixed flora is the mainstay of treatment. Pulmonary physiotherapy and postural drainage are also important. Surgical procedures are required in selective patients for drainage or pulmonary resection.
Pancreatic enzyme replacement is often effective in treating the malabsorption and steatorrhea associated with chronic pancreatitis. Treatment of CP consists of administration of a solution of pancreatic enzymes with meals. Some patients do have pain reduction with enzyme replacement and since they are relatively safe, giving enzyme replacement to a chronic pancreatitis patient is an acceptable step in treatment for most patients. Treatment may be more likely to be successful in those without involvement of large ducts and those with idiopathic pancreatitis.
Treatment for TOA differs from PID in that some clinicians recommend patients with tubo-ovarian abscesses have at least 24 hours of inpatient parenteral treatment with antibiotics, and that they may require surgery. If surgery becomes necessary, pre-operative administration of broad-spectrum antibiotics is started and removal of the abscess, the affected ovary and fallopian tube is done. After discharge from the hospital, oral antibiotics are continued for the length of time prescribed by the physician.
Treatment is different if the TOA is discovered before it ruptures and can be treated with IV antibiotics. During this treatment, IV antibiotics are usually replaced with oral antibiotics on an outpatient basis. Patients are usually seen three days after hospital discharge and then again one to two weeks later to confirm that the infection has cleared. Ampicillin/sulbactam plus doxycycline is effective against C. trachomatis, N. gonorrhoeae, and anaerobes in women with tubo-ovarian abscess. Parenteral Regimens described by the Centers for Disease Control and prevention are Ampicillin/Sulbactam 3 g IV every 6 hours and Doxycycline 200 mg orally or IV every 24 hours, though other regiemes that are used for pelvic inflammatory disease have been effective.
The different treatment options for management of chronic pancreatitis are medical measures, therapeutic endoscopy and surgery. Treatment is directed, when possible, to the underlying cause, and to relieve pain and malabsorption. Insulin dependent diabetes mellitus may occur and need long term insulin therapy. The abdominal pain can be very severe and require high doses of analgesics, sometimes including opiates. Alcohol cessation and dietary modifications (low-fat diet) are important to manage pain and slow the calcific process. Antioxidants may help but it is unclear if the benefits are meaningful.
If left untreated, an anal fistula will almost certainly form, connecting the rectum to the skin. This requires more intensive surgery. Furthermore, any untreated abscess may (and most likely will) continue to expand, eventually becoming a serious systemic infection.
Treatment is problematic unless an underlying endocrine disorder can be successfully diagnosed and treated.
A study by Goepel and Panhke provided indications that the inflammation should be controlled by bromocriptine even in absence of hyperprolactinemia.
Antibiotic treatment is given in case of acute inflammation. However, this alone is rarely effective, and the treatment of a subareaolar abscess is primarily surgical. In case of an acute abscess, incision and drainage are performed, followed by antibiotics treatment. However, in contrast to peripheral breast abscess which often resolves after antibiotics and incision and drainage, subareaolar breast abscess has a tendency to recur, often accompanied by the formation of fistulas leading from inflammation area to the skin surface. In many cases, in particular in patients with recurrent subareolar abscess, the excision of the affected lactiferous ducts is indicated, together with the excision of any chronic abscess or fistula. This can be performed using radial or circumareolar incision.
There is no universal agreement on what should be the standard way of treating the condition. In a recent review article, antibiotics treatment, ultrasound evaluation and, if fluid is present, ultrasound-guided fine needle aspiration of the abscess with an 18 gauge needle, under saline lavage until clear, has been suggested as initial line of treatment for breast abscess in puerperal and non-puerperal cases including central (subareolar) abscess (see breast abscess for details). Elsewhere, it has been stated that treatment of subareolar abscess is unlikely to work if it does not address the ducts as such.
Duct resection has been traditionally used to treat the condition; the original Hadfield procedure has been improved many times but long term success rate remains poor even for radical surgery. Petersen even suggests that damage caused by previous surgery is a frequent cause of subareolar abscesses. Goepel and Pahnke and other authors recommend performing surgeries only with concomitant bromocriptine treatment.