Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first line treatment for polymyositis is corticosteroids. Specialized exercise therapy may supplement treatment to enhance quality of life.
Once a diagnosis of JDMS is made, the treatment is often a 3-day course of Intravenous ("pulse") steroids (methylprednisolone, Solu-Medrol), followed by a high dose of oral prednisone (usually 1–2 mg/kg of body weight) for several weeks. This action usually brings the disease under control, lowering most lab tests to or near normal values. Some minor improvement in muscle symptoms may also be seen in this time, but normally it takes a long time for full muscle strength to be regained.
Once the disease process is under control, oral steroids are tapered gradually to minimize their side effects. Often, steroid-sparing drugs, such as methotrexate (a chemotherapy drug) or other DMARDs, are given to compensate for the reduction in oral steroids. Once the oral steroids are reduced to a less toxic level, the sparing agents can also be gradually withdrawn. Lab results are closely monitored during the tapering process to ensure that the disease does not recur.
In the cases where steroids or second-line drugs are not tolerated or are ineffective, there are other treatments that can be tried. These include other chemotherapy drugs, such as ciclosporin, infliximab, or other DMARDs. Another is intravenous immunoglobulin (IVIg), a blood product that has been shown to be very effective against JDMS.
To treat the skin rash, anti-malarial drugs, such as hydroxychloroquine (Plaquenil) are usually given. Topical steroid creams (hydrocortisone) may help some patients, and anti-inflammatory creams (such as tacrolimus) are proving to be very effective. Dry skin caused by the rash can be combated by regular application of sunscreen or any moisturizing cream. Most JDM patients are very sensitive to sun exposure, and sunburn may be a disease activity trigger in some, so daily application of high-SPF sunscreen is often recommended.
In severe cases of PM and DM with systemic signs, an initial three to five days on intravenous corticosteroid (methylprednisolone) may be used; but normally treatment begins with a single daily (after breakfast) high dose of oral corticosteroid (prednisone). After a month or so the strength of every second day's dose is very gradually reduced over three to four months, to minimize the negative effects of the prednisone. When a high dose of prednisone cannot be reduced without losing muscle strength, or when prednisone is effective but it is producing significant complications, "steroid sparing" oral immunosuppressants such as azathioprine, mycophenolate mofetil, methotrexate and cyclosporine, may be used in combination with reduced prednisone. Some of these steroid sparing drugs can take several months to demonstrate an effect.
To minimize side effects, patients on corticosteroids should follow a strict high-protein, low-carbohydrate, low-salt diet; and with long-term corticosteroid use a daily calcium supplement and weekly vitamin D supplement (and a weekly dose of Fosamax for postmenopausal women) should be considered.
For patients not responding to this approach there is weak evidence supporting the use of intravenous immunoglobulin, ciclosporin, tacrolimus, mycophenolate mofetil and other agents; and trials of rituximab have indicated a potential therapeutic effect.
There have been few randomized treatment trials, due to the relative rarity of inflammatory myopathies. The goal of treatment is improvement in activities of daily living and muscle strength. Suppression of immune system activity (immunosuppression) is the treatment strategy. Patients with PM or DM almost always improve to some degree in response to treatment, at least initially, and many recover fully with maintenance therapy. (If there is no initial improvement from treatment of PM or DM, the diagnosis should be carefully re-examined.) There is no proven effective therapy for IBM, and most IBM patients will need assistive devices such as a cane, a walking frame or a wheelchair. The later in life IBM arises, the more aggressive it appears to be.
There is no current cure. The only way to treat this disease is by treating symptoms. Commonly patients are prescribed immunosuppressive drugs. Another route would be to take collagen regulation drugs.
Treatments for autoimmune disease have traditionally been immunosuppressive, anti-inflammatory, or palliative. Managing inflammation is critical in autoimmune diseases. Non-immunological therapies, such as hormone replacement in Hashimoto's thyroiditis or Type 1 diabetes mellitus treat outcomes of the autoaggressive response, thus these are palliative treatments. Dietary manipulation limits the severity of celiac disease. Steroidal or NSAID treatment limits inflammatory symptoms of many diseases. IVIG is used for CIDP and GBS. Specific immunomodulatory therapies, such as the TNFα antagonists (e.g. etanercept), the B cell depleting agent rituximab, the anti-IL-6 receptor tocilizumab and the costimulation blocker abatacept have been shown to be useful in treating RA. Some of these immunotherapies may be associated with increased risk of adverse effects, such as susceptibility to infection.
Helminthic therapy is an experimental approach that involves inoculation of the patient with specific parasitic intestinal nematodes (helminths). There are currently two closely related treatments available, inoculation with either Necator americanus, commonly known as hookworms, or Trichuris Suis Ova, commonly known as Pig Whipworm Eggs.
T cell vaccination is also being explored as a possible future therapy for autoimmune disorders.
There is no standard course of treatment to slow or stop the progression of the disease. sIBM patients do not reliably respond to the anti-inflammatory, immunosuppressant, or immunomodulatory medications. Management is symptomatic. Prevention of falls is an important consideration. Specialized exercise therapy may supplement treatment to enhance quality of life. Physical therapy is recommended to teach the patient a home exercise program, to teach how to compensate during mobility-gait training with an assistive device, transfers and bed mobility.
Vitamin D/Sunlight
Omega-3 Fatty Acids
Probiotics/Microflora
Antioxidants
Of the children diagnosed with and treated for JDM, about half will recover completely. Close to 30 percent will have weakness after the disease resolves. Most children will go into remission and have their medications eliminated within two years, while others may take longer to respond or have more severe symptoms that take longer to clear up.
A common lasting effect of JDM is childhood arthritis.
Diagnosis is fourfold: History and physical examination, elevation of creatine kinase, electromyograph (EMG) alteration, and a positive muscle biopsy.
The hallmark clinical feature of polymyositis is proximal muscle weakness, with less important findings being muscle pain and dysphagia. Cardiac and pulmonary findings will be present in approximately 25% of cases of patients with polymyositis.
Sporadic inclusion body myositis (sIBM): IBM is often confused with (misdiagnosed as) polymyositis or dermatomyositis that does not respond to treatment is likely IBM. sIBM comes on over months to years; polymyositis comes on over weeks to months. Polymyositis tends to respond well to treatment, at least initially; IBM does not.
These are also referred to as systemic autoimmune diseases. The autoimmune CTDs may have both genetic and environmental causes. Genetic factors may create a predisposition towards developing these autoimmune diseases. They are characterized as a group by the presence of spontaneous overactivity of the immune system that results in the production of extra antibodies into the circulation. The classic collagen vascular diseases have a "classic" presentation with typical findings that doctors can recognize during an examination. Each also has "classic" blood test abnormalities and abnormal antibody patterns. However, each of these diseases can evolve slowly or rapidly from very subtle abnormalities before demonstrating the classic features that help in the diagnosis. The classic collagen vascular diseases include:
- Systemic lupus erythematosus (SLE) – An inflammation of the connective tissues, SLE can afflict every organ system. It is up to nine times more common in women than men and strikes black women three times as often as white women. The condition is aggravated by sunlight.
- Rheumatoid arthritis – Rheumatoid arthritis is a systemic disorder in which immune cells attack and inflame the membrane around joints. It also can affect the heart, lungs, and eyes. Of the estimated 2.1 million Americans with rheumatoid arthritis, approximately 1.5 million (71 percent) are women.
- Scleroderma – an activation of immune cells that produces scar tissue in the skin, internal organs, and small blood vessels. It affects women three times more often than men overall, but increases to a rate 15 times greater for women during childbearing years, and appears to be more common among black women.
- Sjögren's syndrome – also called Sjögren's disease, is a chronic, slowly progressing inability to secrete saliva and tears. It can occur alone or with rheumatoid arthritis, scleroderma, or systemic lupus erythematosus. Nine out of 10 cases occur in women, most often at or around mid-life.
- Mixed connective tissue disease – Mixed connective-tissue disease (MCTD) is a disorder in which features of various connective-tissue diseases (CTDs) such as systemic lupus erythematosus (SLE); systemic sclerosis (SSc); dermatomyositis (DM); polymyositis (PM); anti-synthetase syndrome; and, occasionally, Sjögren syndrome can coexist and overlap. The course of the disease is chronic and usually milder than other CTDs. In most cases, MCTD is considered an intermediate stage of a disease that eventually becomes either SLE or Scleroderma.
- Undifferentiated connective tissue disease (UCTD) is a disease in which the body mistakenly attacks its own tissues. It is diagnosed when there is evidence of an existing autoimmune condition which does not meet the criteria for any specific autoimmune disease, such as systemic lupus erythematosus or scleroderma. Latent lupus and incomplete lupus are alternative terms that have been used to describe this condition.
- Psoriatic arthritis is also a collagen vascular disease.
When sIBM was originally described, the major feature noted was muscle inflammation. Two other disorders were also known to display muscle inflammation, and sIBM was classified along with them. They are dermatomyositis (DM) and polymyositis (PM) and all three illnesses were called idiopathic (of unknown origin) myositis or inflammatory myopathies.
It appears that sIBM and polymyositis share some features, especially the initial sequence of immune system activation, however, polmyositis comes on over weeks or months, does not display the subsequent muscle degeneration and protein abnormalities as seen in IBM, and as well, polymyositis tends to respond well to treatments, IBM does not. IBM is often confused with (misdiagnosed as) polymyositis. Polymyositis that does not respond to treatment is likely IBM.
Dermatomyositis shares a number of similar physical symptoms and histopathological traits as polymyositis, but exhibits a skin rash not seen in polymyositis or sIBM. It may have different root causes unrelated to either polymyositis or sIBM.
A connective tissue disease is any disease that has the connective tissues of the body as a target of pathology. Connective tissue is any type of biological tissue with an extensive extracellular matrix that supports, binds together, and protects organs. These tissues form a framework, or matrix, for the body, and are composed of two major structural protein molecules: collagen and elastin. There are many different types of collagen protein in each of the body's tissues. Elastin has the capability of stretching and returning to its original length—like a spring or rubber band. Elastin is the major component of ligaments (tissues that attach bone to bone) and skin. In patients with connective tissue disease, it is common for collagen and elastin to become injured by inflammation (ICT). Many connective tissue diseases feature abnormal immune system activity with inflammation in tissues as a result of an immune system that is directed against one's own body tissues (autoimmunity).
Diseases in which inflammation or weakness of collagen tends to occur are also referred to as collagen diseases. Collagen vascular diseases can be (but are not necessarily) associated with collagen and blood vessel abnormalities and that are autoimmune in nature. See also vasculitis.
Connective tissue diseases can have strong or weak inheritance risks, and can also be caused by environmental factors.
Scleromyositis or the PM/Scl overlap syndrome is a complex autoimmune disease (a disease in which the immune system attacks the body). Patients with scleromyositis have symptoms of both systemic scleroderma and either polymyositis or dermatomyositis, and is therefore considered an overlap syndrome. Although it is a rare disease, it is one of the more common overlap syndromes seen in scleroderma patients, together with MCTD and Antisynthetase syndrome. Autoantibodies often found in these patients are the anti-PM/Scl (anti-exosome) antibodies.
The symptoms that are seen most often are typical symptoms of the individual autoimmune diseases and include Raynaud's phenomenon, arthritis, myositis and scleroderma. Treatment of these patients is therefore strongly dependent on the exact symptoms with which a patient reports to a physician and is similar to treatment for the individual autoimmune disease, often involving either immunosuppressive or immunomodulating drugs.
- Clinical characteristics:
- Overlap Syndrome: scleroderma overlap syndrome
- Autoimmune disease
- Scleroderma myositis overlap syndrome
Dermatopolymyositis (also called PM/DM) is a family of myositis disorders that includes polymyositis and dermatomyositis.
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
A complete recovery following immunotherapy and tumor removal. Untreated cases died within few months of onset. Some patients have a poor outcome despite sustained immunosuppression, but that is often related to tumor progression or associated with the presence of Abs directed against intracellular Ags such as GAD Abs or amphyphysin Abs, which can reflect the involvement of an additional cytotoxic T-cell mechanism in the progression of the disease.
The primary treatment of PPID is pergolide, a dopamine agonist that provides suppression to the pars intermedia in place of the dysfunctional hypothalamus. Horses should be reassessed in 30 days following the start of treatment, though evaluation of clinical signs and by baseline diagnostic testing, to ensure the appropriate dose is being prescribed. Results from that test dictate changes in dose. Horses that are responding to treatment should be retested every 6 months, including a test in the autumn when there is a seasonal increase in ACTH, to ensure their ACTH levels are appropriately suppressed during this time. Drug side effects include a transient decrease in appetite, which can be reduced by slowly increasing the dose to therapeutic levels, and by breaking up the daily dose into twice-daily administrations.
Attitude, activity levels, hyperglycemia, and increased drinking and urination are usually improved within 30 days of initiating treatment. Other clinical signs, such as hirsutism, potbellied appearance, muscle wasting, laminitic episodes, and increased predisposition to infection usually take between 30 days and 1 year to improve.
Cyproheptadine may be added to the treatment regime in horses that are inadequately responding to pergolide, but is usually only used in horses with advanced PPID on high doses of pergolide.
Cardiovascular disease is treatable with initial treatment primarily focused on diet and lifestyle interventions. Influenza may make heart attacks and strokes more likely and therefore influenza vaccination may decrease the chance of cardiovascular events and death in people with heart disease.
Proper CVD management necessitates a focus on MI and stroke cases due to their combined high mortality rate, keeping in mind the cost-effectiveness of any intervention, especially in developing countries with low or middle income levels. Regarding MI, strategies using aspirin, atenolol, streptokinase or tissue plasminogen activator have been compared for quality-adjusted life-year (QALY) in regions of low and middle income. The costs for a single QALY for aspirin, atenolol, streptokinase, and t-PA were $25, $630–$730, and $16,000, respectively. Aspirin, ACE inhibitors, beta blockers, and statins used together for secondary CVD prevention in the same regions showed single QALY costs of $300–400.
The main methods of management in involve exercise and diet change, in addition to treatment of PPID. The primary goal is reduction of weight in an obese animal. Diet changes include limiting pasture access and reducing or eliminating grain. Obese animals are often best maintained on a diet consisting ration balancer and hay, fed at 1.5% body weight and decreased if needed. Feed should be selected based on low non-structural carbohydrate levels. Hay NSC levels may be reduced by soaking it in cold water for 30 minutes.
Exercise is increased in non-laminitic horses. Animals resistant to weight loss, despite diet and exercise changes, can be placed on levothyroxine to increase metabolism. Metformin can also be used to reduce glucose absorption through the intestinal tract.
While a healthy diet is beneficial, the effect of antioxidant supplementation (vitamin E, vitamin C, etc.) or vitamins has not been shown to protect against cardiovascular disease and in some cases may possibly result in harm. Mineral supplements have also not been found to be useful. Niacin, a type of vitamin B3, may be an exception with a modest decrease in the risk of cardiovascular events in those at high risk. Magnesium supplementation lowers high blood pressure in a dose dependent manner. Magnesium therapy is recommended for people with ventricular arrhythmia associated with torsades de pointes who present with long QT syndrome as well as for the treatment of people with digoxin intoxication-induced arrhythmias. There is no evidence to support omega-3 fatty acid supplementation.
There are no medications currently approved for the treatment of obesity in children. The American Academy of Pediatrics recommends medications for obesity be discourage. Orlistat and sibutramine may be helpful in managing moderate obesity in adolescence. Metformin is minimally useful. A Cochrane review in 2016 concluded that medications might reduce BMI and bodyweight to a small extent in obese children and adolescents. This conclusion was based only on low quality evidence.
Obesity in children is treated with dietary changes and physical activity. Dieting and missing meals should; however, be discourage. The benefit of tracking BMI and providing counselling around weight is minimal.
Adverse effects have been documented from vitamin B supplements, but never from food sources. Damage to the dorsal root ganglia is documented in human cases of overdose of pyridoxine. Although it is a water-soluble vitamin and is excreted in the urine, doses of pyridoxine in excess of the dietary upper limit (UL) over long periods cause painful and ultimately irreversible neurological problems. The primary symptoms are pain and numbness of the extremities. In severe cases, motor neuropathy may occur with "slowing of motor conduction velocities, prolonged F wave latencies, and prolonged sensory latencies in both lower extremities", causing difficulty in walking. Sensory neuropathy typically develops at doses of pyridoxine in excess of 1,000 mg per day, but adverse effects can occur with much less, so doses over 200 mg are not considered safe. Symptoms among women taking lower doses have been reported.
Existing authorizations and valuations vary considerably worldwide. As noted, the U.S. Institute of Medicine set an adult UL at 100 mg/day. The European Community Scientific Committee on Food defined intakes of 50 mg of vitamin B per day as harmful and established a UL of 25 mg/day. The nutrient reference values in Australia and New Zealand recommend an upper limit of 50 mg/day in adults. "The same figure was set for pregnancy and lactation as there is no evidence of teratogenicity at this level. The UL was set based on metabolic body size and growth considerations for all other ages and life stages except infancy. It was not possible to set a UL for infants, so intake is recommended in the form of food, milk or formula." The ULs were set using results of studies involving long-term oral administration of pyridoxine at doses of less than 1 g/day. "A no-observed-adverse-effect level (NOAEL) of 200 mg/day was identified from the studies of Bernstein & Lobitz (1988) and Del Tredici "et al" (1985). These studies involved subjects who had generally been on the supplements for five to six months or less. The study of Dalton and Dalton (1987), however, suggested the symptoms might take substantially longer than this to appear. In this latter retrospective survey, subjects who reported symptoms had been on supplements for 2.9 years, on average. Those reporting no symptoms had taken supplements for 1.9 years."
Treatments of cancer in cats usually consists of diagnosis and observation of the tumor to determine its type and size, the development of a treatment plan, the associated goals on the part of the treatment methods, and the regular evaluation of the overall health of the pet.