Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is important to distinguish between treatment of the underlying inflammation (PIC) and the treatment of CNV.
2-pronged approach:
Treatment is not always necessary and observation may be appropriate for lesions if they are found in non-sight threatening areas (that is not centrally).
Active lesions of PIC can be treated with corticosteroids taken systemically (tablets) or regionally by injections around the eye (periorbital). It has been argued that treating lesions in this way may help minimise the development of CNV.
The treatment of CNV:
Early treatment is required for this complication. There are several possible treatment methods, but none of these treatments appears to be singly effective for the treatment of CNV.
1. Corticosteroids: systemic or intraocular
2. ‘Second line’ immunosuppressants: There is evidence that combined therapies of steroids and second line immunosuppressants may be important.
3. Surgical excision of the affected area in well selected cases.
4. Intravitreal anti-VEGF agents. Examples are bevacizumab (avastin) and ranibizumab. These relatively new drugs are injected into the eye.
5. Photodynamic therapy (PDT): A photosensitive drug is ‘activated’ by strong light. Consideration may be given to combined therapy of PDT and anti VEGF.
6. Laser photocoagulation: This is occasionally used unless the CNV is subfoveal (affecting the central or macular part of the vision). The laser treatment can damage the vision.
The use of the intravitreal anti VEGF agents namely bevacizumab and ranibizumab have been described recently. The current evidence supporting the use of anti-VEGF agents is based on retrospective case studies and could not be described as strong. However, further data from prospective controlled trials are needed before the therapeutic role of anti-VEGF therapy in the uveitis treatment regimen can be fully determined. The anti VEGF agents furthermore have not been shown to have an anti-inflammatory effect.
Thus, treatment of the underlying inflammatory disease should play a central role in the management of uveitic CNV. A two-pronged treatment that focuses on achieving control of inflammation through the use of corticosteroids and/or immunosuppressive agents, while treating
complications that arise despite adequate disease control with intravitreal anti-VEGF agents, may be useful.
Regular monitoring is essential to achieve a good outcome. This is because even if there is no active inflammation, there may still be occult CNV which requires treatment to avoid suffering vision loss.
The visual prognosis of eyes with PIC that do not develop subfoveal CNV is good. If CNV is picked up early and treated appropriately then the visual outcome can also be good. Frequent monitoring is important to ensure a good outcome. Poor vision occurs mostly with subfoveal CNV or if subretinal fibrosis (scarring) has formed.
The above information comes from a Fact sheet produced by the Uveitis Information Group May 2011. It has been factually checked by a member of the charity's Professional Medical Panel.
Multiple evanescent white dot syndrome (MEWDS) occurs mostly in females. Symptoms include a sudden loss of central vision, but patients eventually regain normal vision. The white dots are small and located in the posterior pole at the level of the retinal pigment epithelium (RPE). The white dots may disappear after the first few weeks of the disease. The cause is generally unknown, but a viral illness has been reported prior to MEWDS in one-third of cases. Since the disease occurs primarily in females, “hormonal status” might be a contributing factor.
Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) primarily occurs in adults (with a mean age of 27). Symptoms include blurred vision in both eyes, but the onset may occur at a different time in each eye. There are yellow-white placoid lesions in the posterior pole at the level of the RPE. Some suggest a genetic predisposition to the disease, while others postulate an abnormal immune response to a virus.
Photopsia is the presence of perceived flashes of light. It is most commonly associated with posterior vitreous detachment, migraine with aura, migraine aura without headache, retinal break or detachment, occipital lobe infarction, and sensory deprivation (ophthalmo"pathic" hallucinations). Vitreous shrinkage or liquefaction, which are the most common causes of photopsia, cause a pull in vitreoretinal attachments, irritating the retina and causing it to discharge electrical impulses. These impulses are interpreted by the brain as 'flashes'.
This condition has also been identified as a common initial symptom of Punctate inner choroiditis (PIC), a rare retinal autoimmune disease believed to be caused by the immune system mistakenly attacking and destroying the retina. During pregnancy, new-onset photopsia is concerning for severe preeclampsia.
Photopsia can present as retinal detachment when examined by an optometrist or ophthalmologist. However, it can also be a sign of Uveal melanoma. This condition is extremely rare (5–7 per 1 million people will be affected, typically fair-skinned, blue-eyed northern Europeans). Photopsia should be investigated immediately.