Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Idebenone is a short-chain benzoquinone that interacts with the mitochondrial electron transport chain to enhance cellular respiration. When used in individuals with LHON, it is believed to allow electrons to bypass the dysfunctional complex I. Successful treatment using idebenone was initially reported in a small number of patients.
Two large-scale studies have demonstrated the benefits of idebenone. The Rescue of Hereditary Optic Disease Outpatient Study (RHODOS) evaluated the effects of idebenone in 85 patients with LHON who had lost vision within the prior five years. In this study, the group taking idebenone 900 mg per day for 24 weeks showed a slight improvement in visual acuity compared to the placebo group, though this difference was not statistically significant. Importantly, however, patients taking idebenone were protected from further vision loss, whereas the placebo group had a steady decline in visual acuity. Further, individuals taking idebenone demonstrated preservation of color vision and persistence of the effects of idebenone 30 months after discontinuing therapy. A retrospective analysis of 103 LHON patients by Carelli et al. builds upon these results. This study highlighted that 44 subjects who were treated with idebenone within one year of onset of vision loss had better outcomes, and, further, that these improvements with idebenone persisted for years.
Idebenone, combined with avoidance of smoke and limitation of alcohol intake, is the preferred standard treatment protocol for patients affected by LHON. Idebenone doses are prescribed to be taken spaced out throughout the day, rather than all at one time. For example, to achieve a dose of 900 mg per day, patients take 300 mg three times daily with meals. Idebenone is fat soluble, and may be taken with a moderate amount of dietary fat in each meal to promote absorption. It is recommended that patients on idebenone also take vitamin C 500 mg daily to keep idebenone in its reduced form, as it is most active in this state.
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Though there is no treatment for Cone dystrophy, certain supplements may help in delaying the progression of the disease.
The beta-carotenoids, lutein and zeaxanthin, have been evidenced to reduce the risk of developing age related macular degeneration (AMD), and may therefore provide similar benefits to Cone dystrophy sufferers.
Consuming omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) has been correlated with a reduced progression of early AMD, and in conjunction with low glycemic index foods, with reduced progression of advanced AMD, and may therefore delay the progression of cone dystrophy.
Treatment of toxic and nutritional optic neuropathy is dictated by the cause of the disorder.
- Toxic optic neuropathy is treated by identification and removal of the offending agent. Depending upon the individual affected, the nature of the agent, total exposure prior to removal, and degree of vision loss at the time of diagnosis, the prognosis is variable.
- Nutritional optic neuropathy is treated with improved nutrition. A well-balanced diet with plenty of protein and green leafy vegetables, vitamin supplementation (thiamine, vitamin B, folic acid, multivitamins), and reduction of smoking and/or drinking are the mainstay of treatment. Again, prognosis is variable and dependent upon the affected individual, treatment compliance, and degree of vision loss at diagnosis.
In both toxic and nutritional neuropathy, vision generally recovers to normal over several days to weeks, though it may take months for full restoration and there is always the risk of permanent vision loss. Visual acuity usually recovers before color vision.
Most ophthalmologists will not advocate any treatment unless visual loss is present and ongoing. Reports of patients with ONSM having no change in their vision for multiple years are not uncommon. If loss of vision occurs, radiation therapy will improve vision in about ⅓ of cases, and preserve vision in about ⅓ of cases. Surgery has traditionally been associated with rapid deteroriation of vision. However, newer surgical techniques may prove better for the treatment of ONSM.
In most MS-associated optic neuritis, visual function spontaneously improves over 2–3 months, and there is evidence that corticosteroid treatment does not affect the long term outcome. However, for optic neuritis that is not MS-associated (or atypical optic neuritis) the evidence is less clear and therefore the threshold for treatment with intravenous corticosteroids is lower. Intravenous corticosteroids also reduce the risk of developing MS in the following two years in patients with MRI lesions; but this effect disappears by the third year of follow up.
Paradoxically, oral administration of corticosteroids in this situation may lead to more recurrent attacks than in non-treated patients (though oral steroids are generally prescribed after the intravenous course, to wean the patient off the medication). This effect of corticosteroids seems to be limited to optic neuritis and has not been observed in other diseases treated with corticosteroids.
A Cochrane Systematic Review studied the effect of corticosteroids for treating people with acute optic neuritis. Specific corticosteroids studied included intravenous and oral methylprednisone, and oral prednisone. The authors conclude that current evidence does not show a benefit of either intravenous or oral corticosteroids for rate of recovery of vision (in terms of visual acuity, contrast sensitivity, or visual fields)..
Owing to the self-limiting nature of the disease, treatment is generally not required. In cases where lesions appear to be interfering with the optic nerve, methyl prednisone is prescribed.
ONSM does not improve without treatment. In many cases, there is gradual progression until vision is lost in the affected eye. However, this takes at least several months to occur, and a minority of patients remain stable for a number of years.
There is no cure for ONH; however, many therapeutic interventions exist for the care of its symptoms. These may include hormone replacement therapy for hypopituitarism, occupational, physical, and/or speech therapy for other issues, and services of a teacher of students with blindness/visually impairment. Special attention should be paid to early development of oral motor skills and acclimation to textured foods for children with texture aversion, or who are otherwise resistant to eating.
Sleep dysfunction can be ameliorated using melatonin in the evening in order to adjust a child's circadian clock.
Treatment for strabismus may include patching of the better eye, which may result in improved vision in the worse eye; however, this should be reserved for cases in which the potential for vision improvement in both eyes is felt to be good. Surgery to align the eyes can be performed once children with strabismus develop equal visual acuity in both eyes, most often after the age of three. Generally surgery results in improved appearance only and not in improved visual function.
There is no known direct treatment. Current treatment efforts focus on managing the complications of Wolfram syndrome, such as diabetes mellitus and diabetes insipidus.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.
Visual prognosis is generally good with prompt diagnosis and aggressive immunomodulatory treatment. Inner ear symptoms usually respond to corticosteroid therapy within weeks to months; hearing usually recovers completely. Chronic eye effects such as cataracts, glaucoma, and optic atrophy can occur. Skin changes usually persist despite therapy.
Treatment requires careful consideration of angiographic findings when a choroidal neovascular membrane is suspected which is a condition that responds to treatment. A vitreo-retinal specialist (an ophthalmologist specialized in treatment of retinal diseases) should be consulted for proper management of the case.
Presumed ocular histoplasmosis syndrome and age-related macular degeneration (AMD) have been successfully treated with laser, anti-vascular endothelial growth factors and photodynamic therapy. Ophthalmologists are using anti-vascular endothelial growth factors to treat AMD and similar conditions since research indicates that vascular endothelial growth factor (VEGF) is one of the causes for the growth of the abnormal vessels that cause these conditions.
If a diagnosis of GCA is suspected, treatment with steroids should begin immediately. A sample (biopsy) of the temporal artery should be obtained to confirm the diagnosis and guide future management, but should not delay initiation of treatment. Treatment does not recover lost vision, but prevents further progression and second eye involvement. High dose corticosteroids may be tapered down to low doses over approximately one year.
Without a known family history of LHON the diagnosis usually requires a neuro-ophthalmological evaluation and blood testing for mitochondrial DNA assessment. It is important to exclude other possible causes of vision loss and important associated syndromes such as heart electrical conduction system abnormalities. The prognosis for those affected left untreated is almost always that of continued significant visual loss in both eyes. Regular corrected visual acuity and perimetry checks are advised for follow up of affected individuals. There is beneficial treatment available for some cases of this disease especially for early onset disease. Also, experimental treatment protocols are in progress. Genetic counselling should be offered. Health and lifestyle choices should be reassessed particularly in light of toxic and nutritional theories of gene expression. Vision aides assistance and work rehabilitation should be used to assist in maintaining employment.
For those who are carriers of a LHON mutation, preclinical markers may be used to monitor progress. For example, fundus photography can monitor nerve fiber layer swelling. Optical coherence tomography can be used for more detailed study of retinal nerve fiber layer thickness. Red green color vision testing may detect losses. Contrast sensitivity may be diminished. There could be an abnormal electroretinogram or visual evoked potentials. Neuron-specific enolase and axonal heavy chain neurofilament blood markers may predict conversion to affected status.
Cyanocobalamin (a form of B12) may also be used.
Avoiding optic nerve toxins is generally advised, especially tobacco and alcohol. Certain prescription drugs are known to be a potential risk, so all drugs should be treated with suspicion and checked before use by those at risk. Ethambutol, in particular, has been implicated as triggering visual loss in carriers of LHON. In fact, toxic and nutritional optic neuropathies may have overlaps with LHON in symptoms, mitochondrial mechanisms of disease and management. Of note, when a patient carrying or suffering from LHON or toxic/nutritional optic neuropathy suffers a hypertensive crisis as a possible complication of the disease process, nitroprusside (trade name: Nipride) should not be used due to increased risk of optic nerve ischemia in response to this anti-hypertensive in particular.
Idebenone has been shown in a small placebo controlled trial to have modest benefit in about half of patients. People most likely to respond best were those treated early in onset.
α-Tocotrienol-quinone, a vitamin E metabolite, has had some success in small open label trials in reversing early onset vision loss.
There are various treatment approaches which have had early trials or are proposed, none yet with convincing evidence of usefulness or safety for treatment or prevention including brimonidine, minocycline, curcumin,
glutathione, near infrared light treatment, and viral vector techniques.
"Three person in vitro fertilization" is a proof of concept research technique for preventing mitochondrial disease in developing human fetuses. So far, viable macaque monkeys have been produced. But ethical and knowledge hurdles remain before use of the technique in humans is established.
If the nematode can be seen by an ophthalmologist, which occurs in less than half of cases, it should be treated with photocoagulation for extramacular location and surgical removal in case the larva is lying in the macula. After the worm is killed, visual acuity loss usually does not progress. Alternatively, Antihelminthic treatment such as high dose oral Albendazole and prednisolone may be used.
In the early stages, there are a few treatment options. Laser surgery or cryotherapy (freezing) can be used to destroy the abnormal blood vessels, thus halting progression of the disease. However, if the leaking blood vessels are clustered around the optic nerve, this treatment is not recommended as accidental damage to the nerve itself can result in permanent blindness. Although Coats' disease tends to progress to visual loss, it may stop progressing on its own, either temporarily or permanently. Cases have been documented in which the condition even reverses itself. However, once total retinal detachment occurs, sight loss is permanent in most cases. Removal of the eye (enucleation) is an option if pain or further complications arise.
There have been attempts to control the inflammation using drugs that work in other conditions where inflammation is a problem. The most successful of these are steroids, but they have side effects when used long term. Other medications, including methotrexate, colchicine and canakinumab, have been tried with some success. Otherwise, the treatment is supportive, or aimed solely at controlling symptoms and maximizing function.
AON is a rare disease and the natural history of the disease process is not well defined. Unlike typical optic neuritis, there is no association with multiple sclerosis, but the visual prognosis for AON is worse than typical optic neuritis. Thus AON patients have different treatment, and often receive chronic immunosuppression. No formal recommendation can be made regarding the best therapeutic approach. However, the available evidence to date supports treatment with corticosteroids and other immunosuppressive agents.
Early diagnosis and prompt treatment with systemic corticosteroids may restore some visual function but the patient may remain steroid dependent; vision often worsens when corticosteroids are tapered. As such, long-term steroid-sparing immunosuppressive agents may be required to limit the side-effects of steroids and minimize the risk of worsening vision.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
Rapid blood transfusions, to correct anemia and raise blood pressure, may improve PION outcomes. In one report of a related disease, hypotension-induced AION, 3 out of 3 patients who received rapid transfusions reported partial recovery of vision. While rapid transfusions offer some hope, the prognosis for perioperative PION remains poor. Prevention remains the best way to reduce PION.
One retrospective report proposes that incidence of PION could be reduced in high-risk cases by altering surgical management. For example, for patients undergoing spine surgery, measures could be taken to minimize intraoperative hypotension, to accelerate the process of blood replacement, and to aggressively treat facial swelling.
There is currently no cure for Costeff syndrome. Treatment is supportive, and thus focuses on management of the symptoms. The resulting visual impairment, spasticity, and movement disorders are treated in the same way as similar cases occurring in the general population.
Those diseases understood as congenital in origin could either be specific to the ocular organ system (LHON, DOA) or syndromic (MELAS, Multiple Sclerosis). It is estimated that these inherited optic neuropathies in the aggregate affect 1 in 10,000
Of the acquired category, disease falls into further etiological distinction as arising from toxic (drugs or chemicals) or nutritional/metabolic (vitamin deficiency/diabetes) insult. It is worth mentioning that under-nutrition and toxic insult can occur simultaneously, so a third category may be understood as having a combined or mixed etiology. We will refer to this as Toxic/Nutritional Optic Neuropathy, whereby nutritional deficiencies and toxic/metabolic insults are the simultaneous culprits of visual loss associated with damage and disruption of the RGC and optic nerve mitochondria.
People with hemeralopia may benefit from sunglasses. Wherever possible, environmental illumination should be adjusted to comfortable level. Light-filtering lenses appear to help in people reporting photophobia.
Otherwise, treatment relies on identifying and treating any underlying disorder.