Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no cure for retinitis pigmentosa, but the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in retinitis pigmentosa patients.
Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients. Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.
The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and the UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the US. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the US announced they would soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.
The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the retinitis pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 retinitis pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.
Idebenone is a short-chain benzoquinone that interacts with the mitochondrial electron transport chain to enhance cellular respiration. When used in individuals with LHON, it is believed to allow electrons to bypass the dysfunctional complex I. Successful treatment using idebenone was initially reported in a small number of patients.
Two large-scale studies have demonstrated the benefits of idebenone. The Rescue of Hereditary Optic Disease Outpatient Study (RHODOS) evaluated the effects of idebenone in 85 patients with LHON who had lost vision within the prior five years. In this study, the group taking idebenone 900 mg per day for 24 weeks showed a slight improvement in visual acuity compared to the placebo group, though this difference was not statistically significant. Importantly, however, patients taking idebenone were protected from further vision loss, whereas the placebo group had a steady decline in visual acuity. Further, individuals taking idebenone demonstrated preservation of color vision and persistence of the effects of idebenone 30 months after discontinuing therapy. A retrospective analysis of 103 LHON patients by Carelli et al. builds upon these results. This study highlighted that 44 subjects who were treated with idebenone within one year of onset of vision loss had better outcomes, and, further, that these improvements with idebenone persisted for years.
Idebenone, combined with avoidance of smoke and limitation of alcohol intake, is the preferred standard treatment protocol for patients affected by LHON. Idebenone doses are prescribed to be taken spaced out throughout the day, rather than all at one time. For example, to achieve a dose of 900 mg per day, patients take 300 mg three times daily with meals. Idebenone is fat soluble, and may be taken with a moderate amount of dietary fat in each meal to promote absorption. It is recommended that patients on idebenone also take vitamin C 500 mg daily to keep idebenone in its reduced form, as it is most active in this state.
Though there is no treatment for Cone dystrophy, certain supplements may help in delaying the progression of the disease.
The beta-carotenoids, lutein and zeaxanthin, have been evidenced to reduce the risk of developing age related macular degeneration (AMD), and may therefore provide similar benefits to Cone dystrophy sufferers.
Consuming omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) has been correlated with a reduced progression of early AMD, and in conjunction with low glycemic index foods, with reduced progression of advanced AMD, and may therefore delay the progression of cone dystrophy.
The progressive nature of and lack of a definitive cure for retinitis pigmentosa contribute to the inevitably discouraging outlook for patients with this disease. While complete blindness is rare, the patient's visual acuity and visual field will continue to decline as initial rod photoreceptor and later cone photoreceptor degradation proceeds. Possible treatments remain in the research and clinical trial stages; however, treatment studies concerning visual restoration in retinitis pigmentosa prove promising for the future.
Studies indicate that children carrying the disease genotype benefit from presymptomatic counseling in order to prepare for the physical and social implications associated with progressive vision loss. While the psychological prognosis can be slightly alleviated with active counseling the physical implications and progression of the disease depend largely on the age of initial symptom manifestation and the rate of photoreceptor degradation, rather than access to prospective treatments. Corrective visual aids and personalized vision therapy provided by Low Vision Specialists may help patients correct slight disturbances in visual acuity and optimize their remaining visual field. Support groups, vision insurance, and lifestyle therapy are additional useful tools for those managing progressive visual decline.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Currently, there is no treatment for the disease. However, ophthalmologists recommend wearing sunglasses and hats outdoors and blue-light blocking glasses when exposed to artificial light sources, such as screens and lights. Tobacco smoke and second-hand smoke should be avoided. Animal studies also show that high doses of vitamin A can be detrimental by building up more lipofuscin toxin. Dietary non-supplemental vitamin A intake may not further the disease progression.
Clinical trials are being conducted with promising early results. The trials may one day lead to treatments that might halt, and possibly even reverse, the effects of Stargardt disease using stem cell therapy, gene therapy, or pharmacotherapy.
The Argus retinal prosthesis, an electronic retinal implant, was successfully fitted to a 67-year-old woman in Italy at the Careggi Hospital in 2016. The patient had a very advanced stage of Stargardt’s disease, and a total absence of peripheral and central visual fields.
Supplements that include lutein and zeaxanthin may slow down the worsening of AMD. They have, however, not been shown to prevent the disease. There is not enough evidence to determine if statins have a role in preventing or slowing the progression of AMD. Antiangiogenic steroids such as anecortave acetate and triamcinolone acetonide have shown no evidence in preventing visual loss in people with neovascular AMD.
No medical or surgical treatment is available for this condition.
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
Early stages may be asymptomatic and may not require any intervention. Initial treatment may include hypertonic eyedrops and ointment to reduce the corneal edema and may offer symptomatic improvement prior to surgical intervention.
Suboptimal vision caused by corneal dystrophy usually requires surgical intervention in the form of corneal transplantation. Penetrating keratoplasty, a common type of corneal transplantation, is commonly performed for extensive corneal dystrophy.
With penetrating keratoplasty (corneal transplant), the long-term results are good to excellent. Recent surgical improvements have been made which have increased the success rate for this procedure. However, recurrence of the disease in the donor graft may happen. Superficial corneal dystrophies do not need a penetrating keratoplasty as the deeper corneal tissue is unaffected, therefore a lamellar keratoplasty may be used instead.
Phototherapeutic keratectomy (PTK) can be used to excise or ablate the abnormal corneal tissue. Patients with superficial corneal opacities are suitable candidates for a this procedure.
Laser treatment of drusen has been studied. While it is possible to eliminate drusen with this treatment strategy, it has been shown that this fails to reduce the risk of developing the choroidal neovascularisation which causes the blindness associated with age-related macular degeneration.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
Treatment of toxic and nutritional optic neuropathy is dictated by the cause of the disorder.
- Toxic optic neuropathy is treated by identification and removal of the offending agent. Depending upon the individual affected, the nature of the agent, total exposure prior to removal, and degree of vision loss at the time of diagnosis, the prognosis is variable.
- Nutritional optic neuropathy is treated with improved nutrition. A well-balanced diet with plenty of protein and green leafy vegetables, vitamin supplementation (thiamine, vitamin B, folic acid, multivitamins), and reduction of smoking and/or drinking are the mainstay of treatment. Again, prognosis is variable and dependent upon the affected individual, treatment compliance, and degree of vision loss at diagnosis.
In both toxic and nutritional neuropathy, vision generally recovers to normal over several days to weeks, though it may take months for full restoration and there is always the risk of permanent vision loss. Visual acuity usually recovers before color vision.
Treatment requires careful consideration of angiographic findings when a choroidal neovascular membrane is suspected which is a condition that responds to treatment. A vitreo-retinal specialist (an ophthalmologist specialized in treatment of retinal diseases) should be consulted for proper management of the case.
Presumed ocular histoplasmosis syndrome and age-related macular degeneration (AMD) have been successfully treated with laser, anti-vascular endothelial growth factors and photodynamic therapy. Ophthalmologists are using anti-vascular endothelial growth factors to treat AMD and similar conditions since research indicates that vascular endothelial growth factor (VEGF) is one of the causes for the growth of the abnormal vessels that cause these conditions.
In the early stages, there are a few treatment options. Laser surgery or cryotherapy (freezing) can be used to destroy the abnormal blood vessels, thus halting progression of the disease. However, if the leaking blood vessels are clustered around the optic nerve, this treatment is not recommended as accidental damage to the nerve itself can result in permanent blindness. Although Coats' disease tends to progress to visual loss, it may stop progressing on its own, either temporarily or permanently. Cases have been documented in which the condition even reverses itself. However, once total retinal detachment occurs, sight loss is permanent in most cases. Removal of the eye (enucleation) is an option if pain or further complications arise.
Optic pits themselves do not need to be treated. However, patients should follow up with their eye care professional annually or even sooner if the patient notices any visual loss whatsoever. Treatment of PVD or serous retinal detachment will be necessary if either develops in a patient with an optic pit.
Treatment modalities currently under clinical investigation include cell therapy, gene therapy and oral therapies.
Regarding cell therapy, Advanced Cell Technology, now called Ocata Therapeutics, has completed Phase I/II multicenter clinical trial using retinal cells derived from human embryonic stem cells (hESCs) to treat patients with Stargardt. After treating and collecting data on 18 patients, Advanced Cell was given approval to test its stem cell therapy on patients with 20/100 vision. In October 2014, the results of the Phase I/II clinical trial were published in "the Lancet".
Research at the preclinical (animal) stage include a new compound that can remove lipofuscin from retinal pigment epithelial cells.
Without a known family history of LHON the diagnosis usually requires a neuro-ophthalmological evaluation and blood testing for mitochondrial DNA assessment. It is important to exclude other possible causes of vision loss and important associated syndromes such as heart electrical conduction system abnormalities. The prognosis for those affected left untreated is almost always that of continued significant visual loss in both eyes. Regular corrected visual acuity and perimetry checks are advised for follow up of affected individuals. There is beneficial treatment available for some cases of this disease especially for early onset disease. Also, experimental treatment protocols are in progress. Genetic counselling should be offered. Health and lifestyle choices should be reassessed particularly in light of toxic and nutritional theories of gene expression. Vision aides assistance and work rehabilitation should be used to assist in maintaining employment.
For those who are carriers of a LHON mutation, preclinical markers may be used to monitor progress. For example, fundus photography can monitor nerve fiber layer swelling. Optical coherence tomography can be used for more detailed study of retinal nerve fiber layer thickness. Red green color vision testing may detect losses. Contrast sensitivity may be diminished. There could be an abnormal electroretinogram or visual evoked potentials. Neuron-specific enolase and axonal heavy chain neurofilament blood markers may predict conversion to affected status.
Cyanocobalamin (a form of B12) may also be used.
Avoiding optic nerve toxins is generally advised, especially tobacco and alcohol. Certain prescription drugs are known to be a potential risk, so all drugs should be treated with suspicion and checked before use by those at risk. Ethambutol, in particular, has been implicated as triggering visual loss in carriers of LHON. In fact, toxic and nutritional optic neuropathies may have overlaps with LHON in symptoms, mitochondrial mechanisms of disease and management. Of note, when a patient carrying or suffering from LHON or toxic/nutritional optic neuropathy suffers a hypertensive crisis as a possible complication of the disease process, nitroprusside (trade name: Nipride) should not be used due to increased risk of optic nerve ischemia in response to this anti-hypertensive in particular.
Idebenone has been shown in a small placebo controlled trial to have modest benefit in about half of patients. People most likely to respond best were those treated early in onset.
α-Tocotrienol-quinone, a vitamin E metabolite, has had some success in small open label trials in reversing early onset vision loss.
There are various treatment approaches which have had early trials or are proposed, none yet with convincing evidence of usefulness or safety for treatment or prevention including brimonidine, minocycline, curcumin,
glutathione, near infrared light treatment, and viral vector techniques.
"Three person in vitro fertilization" is a proof of concept research technique for preventing mitochondrial disease in developing human fetuses. So far, viable macaque monkeys have been produced. But ethical and knowledge hurdles remain before use of the technique in humans is established.
CNV is conventionally treated with intravitreal injections of angiogenesis inhibitors (also known as "anti-VEGF" drugs) to control neovascularization and reduce the area of fluid below the retinal pigment epithelium. Angiogenesis inhibitors include pegaptanib, ranibizumab and bevacizumab (known by a variety of trade names, such as Macugen, Avastin or Lucentis). These inhibitors slow or stop the formation of new blood vessels (angiogenesis), typically by binding to or deactivating the transmission of vascular endothelial growth factor ('VEGF'), a signal protein produced by cells to stimulate formation of new blood vessels. The effectiveness of angiogenesis inhibitors has been shown to significantly improve visual prognosis with CNV, the recurrence rate for these neovascular areas remains high.
CNV may also be treated with photodynamic therapy coupled with a photosensitive drug such as verteporfin (Visudyne). The drug is given intravenously. It is then activated in the eye by a laser light. The drug destroys the new blood vessels, and prevents any new vessels forming by forming thrombi.
Intraocular pressure can be lowered with medication, usually eye drops. Several classes of medications are used to treat glaucoma, with several medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes. Wiping the eye with an absorbent pad after the administration of eye drops may result in fewer adverse effects, like the growth of eyelashes and hyperpigmentation in the eyelid.
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time. Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.
- Prostaglandin analogs, such as latanoprost, bimatoprost and travoprost, increase uveoscleral outflow of aqueous humor. Bimatoprost also increases trabecular outflow.
- Topical beta-adrenergic receptor antagonists, such as timolol, levobunolol, and betaxolol, decrease aqueous humor production by the epithelium of the ciliary body.
- Alpha2-adrenergic agonists, such as brimonidine and apraclonidine, work by a dual mechanism, decreasing aqueous humor production and increasing uveoscleral outflow.
- Less-selective alpha agonists, such as epinephrine, decrease aqueous humor production through vasoconstriction of ciliary body blood vessels, useful only in open-angle glaucoma. Epinephrine's mydriatic effect, however, renders it unsuitable for closed-angle glaucoma due to further narrowing of the uveoscleral outflow (i.e. further closure of trabecular meshwork, which is responsible for absorption of aqueous humor).
- Miotic agents (parasympathomimetics), such as pilocarpine, work by contraction of the ciliary muscle, opening the trabecular meshwork and allowing increased outflow of the aqueous humour. Echothiophate, an acetylcholinesterase inhibitor, is used in chronic glaucoma.
- Carbonic anhydrase inhibitors, such as dorzolamide, brinzolamide, and acetazolamide, lower secretion of aqueous humor by inhibiting carbonic anhydrase in the ciliary body.
In terms of the management of congenital muscular dystrophy the American Academy of Neurology recommends that the individuals
need to have monitoring of cardiac function, respiratory, and gastrointestinal. Additionally it is believed that therapy in speech, orthopedic and physical areas, would improve the persons quality of life.
While there is currently no cure available, it is important to preserve muscle activity and any available correction of skeletal abnormalities (as scoliosis).Orthopedic procedures, like spinal fusion, maintains/increases the individuals prospect for more physical movement.
Without treatment, NTG leads to progressive visual field loss and in the last consequence to blindness. The mainstay of conventional glaucoma therapy, reducing IOP by pressure-lowering eye drops or by surgery, is applied in cases of NTG as well. The rationale: the lower the IOP, the less the risk of ganglion cell loss and thus in the long run of visual function. The appearance of disc hemorrhages is always a warning sign that therapeutic approaches are not successful - the small bleedings, usually described as flame-shaped, almost always indicate a progression of the disease.
Besides this classical glaucoma therapy, the vascular component that exists in the majority of NTG patients has to be managed as well. Dips in blood pressure or a generally low blood pressure have to be prevented - which is a rather uncommon approach in modern medicine where high blood pressure is always seen as an immense clinical challenge, affecting large segments of the population. In patients with systemic hypertension under therapy, the blood pressure should not be lowered too rigorously. NTG might be the only severe (= sight-threatening) disease caused in numerous cases by a too low blood pressure. Both magnesium and low dose calcium channel blockers have been employed in the treatment of some NTG patients. There are therapeutic approaches to underlying conditions like Flammer syndrome. A change in nutrition like the intake of sodium-rich foods has been tried as has the oral administration of low-dosed steroids. Lifestyle interventions are recommended in patients with Flammer syndrome like avoidance of fasting and certain stimuli like a cold environment and stress.
If a diagnosis of GCA is suspected, treatment with steroids should begin immediately. A sample (biopsy) of the temporal artery should be obtained to confirm the diagnosis and guide future management, but should not delay initiation of treatment. Treatment does not recover lost vision, but prevents further progression and second eye involvement. High dose corticosteroids may be tapered down to low doses over approximately one year.
The modern goals of glaucoma management are to avoid glaucomatous damage and nerve damage, and preserve visual field and total quality of life for patients, with minimal side effects. This requires appropriate diagnostic techniques and follow-up examinations, and judicious selection of treatments for the individual patient. Although intraocular pressure is only one of the major risk factors for glaucoma, lowering it via various pharmaceuticals and/or surgical techniques is currently the mainstay of glaucoma treatment.
Vascular flow and neurodegenerative theories of glaucomatous optic neuropathy have prompted studies on various neuroprotective therapeutic strategies, including nutritional compounds, some of which may be regarded by clinicians as safe for use now, while others are on trial.
There is no known direct treatment. Current treatment efforts focus on managing the complications of Wolfram syndrome, such as diabetes mellitus and diabetes insipidus.