Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no cure for ONH; however, many therapeutic interventions exist for the care of its symptoms. These may include hormone replacement therapy for hypopituitarism, occupational, physical, and/or speech therapy for other issues, and services of a teacher of students with blindness/visually impairment. Special attention should be paid to early development of oral motor skills and acclimation to textured foods for children with texture aversion, or who are otherwise resistant to eating.
Sleep dysfunction can be ameliorated using melatonin in the evening in order to adjust a child's circadian clock.
Treatment for strabismus may include patching of the better eye, which may result in improved vision in the worse eye; however, this should be reserved for cases in which the potential for vision improvement in both eyes is felt to be good. Surgery to align the eyes can be performed once children with strabismus develop equal visual acuity in both eyes, most often after the age of three. Generally surgery results in improved appearance only and not in improved visual function.
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
Currently there is no effective therapy for dominant optic atrophy, and consequently, these patients are simply monitored for changes in vision by their eye-care professional. Children of patients should be screened regularly for visual changes related to dominant optic atrophy. Research is underway to further characterize the disease so that therapies may be developed.
Treatment of toxic and nutritional optic neuropathy is dictated by the cause of the disorder.
- Toxic optic neuropathy is treated by identification and removal of the offending agent. Depending upon the individual affected, the nature of the agent, total exposure prior to removal, and degree of vision loss at the time of diagnosis, the prognosis is variable.
- Nutritional optic neuropathy is treated with improved nutrition. A well-balanced diet with plenty of protein and green leafy vegetables, vitamin supplementation (thiamine, vitamin B, folic acid, multivitamins), and reduction of smoking and/or drinking are the mainstay of treatment. Again, prognosis is variable and dependent upon the affected individual, treatment compliance, and degree of vision loss at diagnosis.
In both toxic and nutritional neuropathy, vision generally recovers to normal over several days to weeks, though it may take months for full restoration and there is always the risk of permanent vision loss. Visual acuity usually recovers before color vision.
Whether blindness is treatable depends upon the cause. Surgical intervention can be performed in PCG which is childhood glaucoma, usually starting early in childhood. Primary congenital glaucoma is caused by an abnormal drainage of the eye. However, surgical intervention is yet to prove effective.
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
Without treatment, NTG leads to progressive visual field loss and in the last consequence to blindness. The mainstay of conventional glaucoma therapy, reducing IOP by pressure-lowering eye drops or by surgery, is applied in cases of NTG as well. The rationale: the lower the IOP, the less the risk of ganglion cell loss and thus in the long run of visual function. The appearance of disc hemorrhages is always a warning sign that therapeutic approaches are not successful - the small bleedings, usually described as flame-shaped, almost always indicate a progression of the disease.
Besides this classical glaucoma therapy, the vascular component that exists in the majority of NTG patients has to be managed as well. Dips in blood pressure or a generally low blood pressure have to be prevented - which is a rather uncommon approach in modern medicine where high blood pressure is always seen as an immense clinical challenge, affecting large segments of the population. In patients with systemic hypertension under therapy, the blood pressure should not be lowered too rigorously. NTG might be the only severe (= sight-threatening) disease caused in numerous cases by a too low blood pressure. Both magnesium and low dose calcium channel blockers have been employed in the treatment of some NTG patients. There are therapeutic approaches to underlying conditions like Flammer syndrome. A change in nutrition like the intake of sodium-rich foods has been tried as has the oral administration of low-dosed steroids. Lifestyle interventions are recommended in patients with Flammer syndrome like avoidance of fasting and certain stimuli like a cold environment and stress.
Optic pits themselves do not need to be treated. However, patients should follow up with their eye care professional annually or even sooner if the patient notices any visual loss whatsoever. Treatment of PVD or serous retinal detachment will be necessary if either develops in a patient with an optic pit.
If a diagnosis of GCA is suspected, treatment with steroids should begin immediately. A sample (biopsy) of the temporal artery should be obtained to confirm the diagnosis and guide future management, but should not delay initiation of treatment. Treatment does not recover lost vision, but prevents further progression and second eye involvement. High dose corticosteroids may be tapered down to low doses over approximately one year.
In most MS-associated optic neuritis, visual function spontaneously improves over 2–3 months, and there is evidence that corticosteroid treatment does not affect the long term outcome. However, for optic neuritis that is not MS-associated (or atypical optic neuritis) the evidence is less clear and therefore the threshold for treatment with intravenous corticosteroids is lower. Intravenous corticosteroids also reduce the risk of developing MS in the following two years in patients with MRI lesions; but this effect disappears by the third year of follow up.
Paradoxically, oral administration of corticosteroids in this situation may lead to more recurrent attacks than in non-treated patients (though oral steroids are generally prescribed after the intravenous course, to wean the patient off the medication). This effect of corticosteroids seems to be limited to optic neuritis and has not been observed in other diseases treated with corticosteroids.
A Cochrane Systematic Review studied the effect of corticosteroids for treating people with acute optic neuritis. Specific corticosteroids studied included intravenous and oral methylprednisone, and oral prednisone. The authors conclude that current evidence does not show a benefit of either intravenous or oral corticosteroids for rate of recovery of vision (in terms of visual acuity, contrast sensitivity, or visual fields)..
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
ONSM does not improve without treatment. In many cases, there is gradual progression until vision is lost in the affected eye. However, this takes at least several months to occur, and a minority of patients remain stable for a number of years.
Most ophthalmologists will not advocate any treatment unless visual loss is present and ongoing. Reports of patients with ONSM having no change in their vision for multiple years are not uncommon. If loss of vision occurs, radiation therapy will improve vision in about ⅓ of cases, and preserve vision in about ⅓ of cases. Surgery has traditionally been associated with rapid deteroriation of vision. However, newer surgical techniques may prove better for the treatment of ONSM.
The visual prognosis in optic nerve hypoplasia is quite variable. Occasionally, optic nerve hypoplasia may be compatible with near-normal vision; in other cases, one or both eyes may be functionally, or legally blind. Although most patients with only optic nerve involvement lead normally productive lives, those with accompanying endocrine dysfunction or other midline cerebral abnormalities are more at risk for on-going intellectual and other disabilities.
Rapid blood transfusions, to correct anemia and raise blood pressure, may improve PION outcomes. In one report of a related disease, hypotension-induced AION, 3 out of 3 patients who received rapid transfusions reported partial recovery of vision. While rapid transfusions offer some hope, the prognosis for perioperative PION remains poor. Prevention remains the best way to reduce PION.
One retrospective report proposes that incidence of PION could be reduced in high-risk cases by altering surgical management. For example, for patients undergoing spine surgery, measures could be taken to minimize intraoperative hypotension, to accelerate the process of blood replacement, and to aggressively treat facial swelling.
Once NAION happens, it was thought that there was no accepted treatment to reverse the damage. However, a recent uncontrolled retrospective large study has shown that if patients are treated with large doses of corticosteroid therapy during the early stages of NAION, in eyes with initial visual acuity of 20/70 or worse, seen within 2 weeks of onset, there was visual acuity improvement in 70% in the treated group compared to 41% in the untreated group (odds ratio of improvement: 3.39; 95% CI:1.62, 7.11; p ¼ 0.001). That study and a natural history study on NAION (Ophthalmology 2008;115: 298–305.) showed that visual acuity can improve up to 6 months and not after that. To minimize the risk of further visual loss in the fellow eye or the same eye, it is essential to reduce the risk factors. Common sense dictates trying to control the cardiovascular risk factors for many reasons, including protection from this happening to the second eye. Sudden vision loss should lead to an ophthalmological consultation. If NAION is suspected, then ideally a neuro-ophthalmologist's consultation should be obtained.
A recent Cochrane Review sought to determine the extent of safety and efficacy of optic nerve decompression surgery for NAION, compared to other treatments, or no treatment. The one study included in the review found no improvements in visual acuity among patients who underwent surgery for NAION, and adverse events (pain, double vision) experienced by participants who underwent surgery.
There is much research currently underway looking at ways to protect the nerve (neuroprotection) or even regenerate new fibers within the optic nerve. So far there is no evidence in human studies that the so-called neuroprotectors have any beneficial effect in NAION.
However, there is a new current clinical trial for the treatment of NAION in the United States with plans to include sites in India, Israel, Germany and Australia (see NORDICclinicaltrials.com and https://clinicaltrials.gov/). This trial will test the use of a synthetic siRNA that blocks caspase 2, an important enzyme in the apoptosis cycle.
In addition to such research, patents have been applied for by Pfizer, The University of Southern California, Otsuka Pharmaceutical and other individual inventors for innovations related to the treatment of anterior ischemic optic neuropathy.
Intraocular pressure can be lowered with medication, usually eye drops. Several classes of medications are used to treat glaucoma, with several medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes. Wiping the eye with an absorbent pad after the administration of eye drops may result in fewer adverse effects, like the growth of eyelashes and hyperpigmentation in the eyelid.
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time. Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.
- Prostaglandin analogs, such as latanoprost, bimatoprost and travoprost, increase uveoscleral outflow of aqueous humor. Bimatoprost also increases trabecular outflow.
- Topical beta-adrenergic receptor antagonists, such as timolol, levobunolol, and betaxolol, decrease aqueous humor production by the epithelium of the ciliary body.
- Alpha2-adrenergic agonists, such as brimonidine and apraclonidine, work by a dual mechanism, decreasing aqueous humor production and increasing uveoscleral outflow.
- Less-selective alpha agonists, such as epinephrine, decrease aqueous humor production through vasoconstriction of ciliary body blood vessels, useful only in open-angle glaucoma. Epinephrine's mydriatic effect, however, renders it unsuitable for closed-angle glaucoma due to further narrowing of the uveoscleral outflow (i.e. further closure of trabecular meshwork, which is responsible for absorption of aqueous humor).
- Miotic agents (parasympathomimetics), such as pilocarpine, work by contraction of the ciliary muscle, opening the trabecular meshwork and allowing increased outflow of the aqueous humour. Echothiophate, an acetylcholinesterase inhibitor, is used in chronic glaucoma.
- Carbonic anhydrase inhibitors, such as dorzolamide, brinzolamide, and acetazolamide, lower secretion of aqueous humor by inhibiting carbonic anhydrase in the ciliary body.
Laser treatment of drusen has been studied. While it is possible to eliminate drusen with this treatment strategy, it has been shown that this fails to reduce the risk of developing the choroidal neovascularisation which causes the blindness associated with age-related macular degeneration.
Braille is a universal way to learn how to read and write, for the blind. A refreshable braille display is an assistive learning device that can help such children in school. Schools for the blind are a form of management, however the limitations of using studies done in such schools has been recognized. Children that are enrolled presently, usually, had developed blindness 5 or more years prior to enrollment, consequently not reflecting current possible causes. About 66% of children with visual impairment also have one other disability (comorbidity), be it, intellectual disabilities, cerebral palsy, or hearing loss. Eye care/screening for children within primary health care is important as catching ocular disease issues can lead to better outcomes.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.
While radiation or chemotherapy may be helpful, treatment is often not necessary. Optical gliomas often cannot be surgically resected. If no visual symptoms wait 6 months and then in 6 months only treat if there are symptoms (visual loss, eye pain), otherwise do not treat.
The modern goals of glaucoma management are to avoid glaucomatous damage and nerve damage, and preserve visual field and total quality of life for patients, with minimal side effects. This requires appropriate diagnostic techniques and follow-up examinations, and judicious selection of treatments for the individual patient. Although intraocular pressure is only one of the major risk factors for glaucoma, lowering it via various pharmaceuticals and/or surgical techniques is currently the mainstay of glaucoma treatment.
Vascular flow and neurodegenerative theories of glaucomatous optic neuropathy have prompted studies on various neuroprotective therapeutic strategies, including nutritional compounds, some of which may be regarded by clinicians as safe for use now, while others are on trial.
Visual prognosis is generally good with prompt diagnosis and aggressive immunomodulatory treatment. Inner ear symptoms usually respond to corticosteroid therapy within weeks to months; hearing usually recovers completely. Chronic eye effects such as cataracts, glaucoma, and optic atrophy can occur. Skin changes usually persist despite therapy.
Owing to the self-limiting nature of the disease, treatment is generally not required. In cases where lesions appear to be interfering with the optic nerve, methyl prednisone is prescribed.
There is currently no cure for GAPO syndrome, but some options are available to reduce the symptoms. Nearsightedness, which affects some sufferers of the disease, can be treated by corrective lenses. Unfortunately, optic atrophy as a result of degradation of the optic nerve (common with GAPO syndrome) cannot be corrected. Corticosteroids have been proposed as a treatment for optic nerve atrophy, but their effectiveness is disputed, and no steroid based treatments are currently available.