Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of opioid tolerance and Opioid-Induced Hyperalgesia (OIH) differs but it may be difficult to differentiate these two conditions in a clinical setting where most pain assessments are done through simple scale scores. The treatment for OIH may be challenging because an inadequate number of quality studies exists possibly due to the complexity in diagnosis of OIH and challenges in working with patients on chronic opioids. Currently there is no single best treatment method for OIH and clinicians are advised to choose an appropriate therapy based on the unique clinical scenario and history of each patient.
One general treatment option is to reduce or discontinue the dose of opioid to see if OIH is improved. Opioid sparing or opioid switching, which is replacing the current opioid with another pharmacological agent such as morphine or methadone, has been reported to be effective in some studies but this may also increase the sensitivity to pain according to some case reports. Ketamine, a NMDA antagonist, has been shown to prevent the extended use of opioid in post-operative hyperalgesia when it is infused in a small amount perioperatively along with the opioid but there are also studies that show ketamine being ineffective in modulating hyperalgesia. Addition of the NSAID, especially some COX-2 inhibitors, or acetaminophen is also suggested as a possible treatment option.
Hyperalgesia is similar to other sorts of pain associated with nerve irritation or damage such as allodynia and neuropathic pain, and consequently may respond to standard treatment for these conditions, using various drugs such as SSRI or tricyclic antidepressants, Nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, gabapentin or pregabalin, NMDA antagonists, or atypical opioids such as tramadol. Where hyperalgesia has been produced by chronic high doses of opioids, reducing the dose may result in improved pain management. However, as with other forms of nerve dysfunction associated pain, treatment of hyperalgesia can be clinically challenging, and finding a suitable drug or drug combination that is effective for a particular patient may require trial and error. The use of a transcutaneous electrical nerve stimulation device has been shown to alleviate hyperalgesia.
In examining the published studies on opioid-induced hyperalgesia (OIH), Reznikov "et al" criticize the methodologies employed on both humans and animals as being far-removed from the typical regimen and dosages of pain patients in the real world. They also note that some OIH studies were performed on drug addicts in methadone rehabilitation programs, and that such results are very difficult to generalize and apply to medical patients in chronic pain. In contrast, a study of 224 chronic pain patients receiving 'commonly-used' doses of oral opioids, in more typical clinical scenarios, found that the opioid-treated patients actually experienced no difference in pain sensitivity when compared to patients on non-opioid treatments. The authors conclude that opioid-induced hyperalgesia may not be an issue of any significance for normal, medically-treated chronic pain patients at all.
Opioid-induced hyperalgesia has also been criticized as overdiagnosed among chronic pain patients, due to poor differential practice in distinguishing it from the much more common phenomenon of opioid tolerance. The misdiagnosis of common opioid tolerance (OT) as opioid-induced hyperalgesia (OIH) can be problematic as the clinical actions suggested by each condition can be contrary to each other. Patients misdiagnosed with OIH may have their opioid dose mistakenly decreased (in the attempt to counter OIH) at times when it is actually appropriate for their dose to be increased or rotated (as a counter to opioid tolerance).
The suggestion that chronic pain patients who are diagnosed as experiencing opioid-induced hyperalgesia ought to be completely withdrawn from opioid therapy has also been met with criticism. This is not only because of the uncertainties surrounding the diagnosis of OIH in the first place, but because of the viability of rotating the patient between different opioid analgesics over time. Opioid rotation is considered a valid alternative to the reduction or cessation of opioid therapy, and multiple studies demonstrate the rotation of opioids to be a safe and effective protocol.
Numerous compounds alleviate the pain from allodynia. Some are specific for certain types of allodynia while others are general. They include:
- Dynamic mechanical allodynia - compounds targeting different ion channels; opioids
- Mexiletine
- Lidocaine (IV/topical)
- Tramadol
- Morphine (IV)
- Alfentanil (IV)
- Ketamine (IV)
- Methylprednisone (intrathecal)
- Adenosine
- Glycine antagonist
- Desipramine
- Venlafaxine
- Lyrica
- Static mechanical allodynia - sodium channel blockers, opioids
- Lidocaine (IV)
- Alfentanil (IV)
- Adenosine (IV)
- Ketamine (IV)
- Glycine antagonist
- Venlafaxine
- Gabapentin (may also be helpful in cold and dynamic allodynias)
- Cold allodynia
- Lamotrigine
- Lidocaine (IV)
The list of compounds that can be used to treat allodynia is even longer than this. For example, many non-steroidal anti-inflammatory drugs, such as naproxen, can inhibit COX-1 and/or COX-2, thus preventing the sensitization of the central nervous system. Another effect of naproxen is the reduction of the responsiveness of mechano- and thermoreceptors to stimuli.
Other compounds act on molecules important for the transmission of an action potential from one neuron to another. Examples of these include interfering with receptors for neurotransmitters or the enzymes that remove neurotransmitters not bound to receptors.
Endocannabinoids are molecules that can relieve pain by modulating nociceptive neurons. When anandamide, an endocannabinoid, is released, pain sensation is reduced. Anandamide is later transported back to the neurons releasing it using transporter enzymes on the plasma membrane, eventually disinhibiting pain perception. However, this re-uptake can be blocked by AM404, elongating the duration of pain inhibition.
Olanzapine, as well as several other neuroleptic drugs, have also has been investigated for the control of CINV. A 2007 study demonstrated Olanzapine's successful potential for this use, achieving a complete response in the acute prevention of nausea and vomiting in 100% of patients treated with moderately and highly emetogenic chemotherapy, when used in combination with palonosetron and dexamethasone. Neuroleptic agents are now indicated for rescue treatment and the control of breakthrough nausea and vomiting.
Some studies and patient groups say that the use of cannabinoids derived from cannabis during chemotherapy greatly reduces the associated nausea and vomiting, and enables the patient to eat. Synthesized tetrahydrocannabinol (also one of the main active substances in marijuana) is marketed as Marinol and may be practical for this application. Natural medical cannabis is also used and recommended by some oncologists, though its use is regulated and it is not legal in all jurisdictions. However, Marinol was less effective than megestrol acetate in helping cancer patients regain lost appetites. A phase III study found no difference in effects of an oral cannabis extract or THC on appetite and quality of life (QOL) in patients with cancer-related anorexia-cachexia syndrome (CACS) to placebo.
Dexamethasone, a corticosteroid, is often used alongside other antiemetic drugs, as it has synergistic action with many of them, although its specific antiemetic mechanism of action is not fully understood. Metoclopramide, a dopamine D receptor antagonist with possible other mechanisms, is an older drug that is sometimes used, either on its own or in combination with others. Histamine blockers such as diphenhydramine or meclozine may be used in rescue treatment. Lorazepam and diazepam may sometimes be used to relieve anxiety associated with CINV before administration of chemotherapy, and are also often used in the case of rescue treatment.
A newer class of drugs known as the NK antagonists are a recently developed class of very efficacious drugs for controlling CINV. These drugs are often used alongside 5HT inhibitors and corticosteroids to form a very potent cocktail of antiemetics that verge on achieving a nearly complete patient response (that is, completely stopping CINV). The substance P inhibitor aprepitant (Emend), which became available in 2005, is highly effective in controlling nausea and vomiting associated with cancer chemotherapy. Aprepitant has been shown to inhibit both the acute and delayed emesis induced by cytotoxic chemotherapeutic drugs by blocking substance P landing on receptors in the brains neurons. This has been proven by Positron Emission Tomography (PET) studies, which have demonstrated that aprepitant can penetrate the brain and NK receptors in the brain. It has also been shown to increase the activity of the 5-HT receptor antagonists ondansetron and the corticosteroid dexamethasone, which are also used to prevent nausea and vomiting caused by chemotherapy. Netupitant has recently been approved by USFDA. It has also been marketed in combination with palonosetron. Rolapitant is the newest addition in the approved NK1 antagonist list. It has advantage of a very long half life, duration of action is around 150 hours. Rolapitant got its approval by USFDA in 2015.
MAO inhibitor drugs block an enzyme system resulting in increased stores of monoamine neurotransmitters. More common antidepressants such as tricyclic antidepressants and SSRIs block reuptake transporters causing increased levels of norepinephrine or serotonin in synapses. Mood stabilizers include lithium and many anticonvulsants, such as carbamazepine and lamotrigine are also used for mood disorders. This would demonstrate little to zero cross-tolerance with serotonergic or lithium treatment.
A wide range of drugs whilst not causing a true physical dependence can still cause withdrawal symptoms or rebound effects during dosage reduction or especially abrupt or rapid withdrawal. These can include caffeine, stimulants, steroidal drugs and antiparkinsonian drugs. It is debated if the entire antipsychotic drug class causes true physical dependency, if only a subset does, or if none do, but all, if discontinued too rapidly, cause an acute withdrawal syndrome. When talking about illicit drugs rebound withdrawal is, especially with stimulants, sometimes referred to as "coming down" or "crashing".
Some drugs, like anticonvulsants and antidepressants, describe the drug category and not the mechanism. The individual agents and drug classes in the anticonvulsant drug category act at many different receptors and it is not possible to generalize their potential for physical dependence or incidence or severity of rebound syndrome as a group so they must be looked at individually. Anticonvulsants as a group however are known to cause tolerance to the anti-seizure effect. SSRI drugs, which have an important use as antidepressants, engender a discontinuation syndrome that manifests with physical side effects. E.g., There have been case reports of a discontinuation syndrome with venlafaxine (Effexor).
Chronic pain is treated with a variety of medications and non-pharmacological interventions. Opioid tolerance and withdrawal can be seen in the NICU and PICU. Other side effects with opioid use can be: cognition deficits, altered mood, and disturbances of endocrine development. Opioid misuse can occur in adolescents and is associated with the use of alcohol, cigarettes and marijuana.
Non-pharmacological treatment for children in helping to relieve periodic pain episodes and severity includes counselling and behavior modification therapy. The American Association of Pediatrics have suggested that parents be educated on providing round the clock medication administration after their children receive surgery.
The use of medications to treat acute, chronic, recurrent and neuropathic pain is most common. Most instances of pain in children are treated with analgesics. These include acetaminophen, NSAIDs, local anesthetics, opioids, and medications for neuropathic pain. The most effective approach to pain management in children is to provide medicine around the clock instead of providing pain relief as needed. Regional anesthesia is also effective and recommended whenever possible. Opioids are effective too but often depress breathing in infants.
These drugs block dopamine receptors and some also block serotonin receptors (such as chlorpromazine, the first antipsychotic used clinically). Having been on one or more antipsychotics for any appreciable amount of time results in dramatically reduced sensitivity to others with similar mechanisms of action. However, an antipsychotic with a substantial disparity in pharmacology (e.g. haloperidol and quetiapine) may retain significant efficacy.
Naltrexone is used for the treatment of opioid addiction. It works by blocking the physiological, euphoric, and reinforcing effects of opioids. Non-compliance with naltrexone therapy is a concern with oral formulations because of its daily dosing, and although the alternative intramuscular (IM) injection has better compliance due to its monthly dosing, attempts to override the blocking effect with higher doses and stronger drugs have proven dangerous. Naltrexone monthly IM injections received FDA approval in 2010 for the treatment of opioid dependence in abstinent opioid users.
Buprenorphine sublingual preparations are often used to manage opioid dependence (that is, dependence on heroin, oxycodone, hydrocodone, morphine, oxymorphone, fentanyl or other opioids). Preparations were approved for this indication by the United States Food and Drug Administration in October 2002. Some formulations of buprenorphine incorporate the opiate antagonist naloxone during the production of the pill form to prevent people from crushing the tablets and injecting them, instead of using the sublingual (under the tongue) route of administration.
Tentative evidence supports the use of bisphosphonates, calcitonin, and ketamine. Doing nerve blocks with guanethidine appears to be harmful. Evidence for sympathetic nerve blocks generally is insufficient to support their use. Intramuscular botulinum injections may benefit people with symptoms localized to one extremity.
Ketamine, a dissociative anesthetic, appears promising as a treatment for complex regional pain syndrome. It may be used in low doses if other treatments have not worked. No benefit on either function or depression, however, has been seen.
Death can be prevented in individuals who have overdosed on opioids if they receive basic life support and naloxone is administered soon after the overdose occurs. Naloxone is effective at reversing the cause, rather than just the symptoms, of an opioid overdose. A longer-acting variant of naloxone is naltrexone. Naltrexone is primarily used to treat opioid and alcohol dependence.
Programs to provide drug users and their caregivers with naloxone are recommended. In the United States its use is estimated to have prevented 10,000 opioid overdose deaths. Healthcare institution-based naloxone prescription programs have also helped reduce rates of opioid overdose in the US state of North Carolina, and have been replicated in the US military. Nevertheless, scale-up of healthcare-based opioid overdose interventions are limited by providers’ insufficient knowledge and negative attitudes towards prescribing take-home naloxone to prevent opioid overdose. Programs training police and fire personnel in opioid overdose response using naloxone have also shown promise.
Early treatment of acute withdrawal often includes medical detoxification, which can include doses of anxiolytics or narcotics to reduce symptoms of withdrawal. An experimental drug, ibogaine, is also proposed to treat withdrawal and craving.
Neurofeedback therapy has shown statistically significant improvements in numerous researches conducted on alcoholic as well as mixed substance abuse population. In chronic opiate addiction, a surrogate drug such as methadone is sometimes offered as a form of opiate replacement therapy. But treatment approaches universal focus on the individual's ultimate choice to pursue an alternate course of action.
Specific antidotes are available for certain overdoses. For example, Naloxone is the antidote for opiates such as heroin or morphine. Similarly, benzodiazepine overdoses may be effectively reversed with flumazenil. As a nonspecific antidote, activated charcoal is frequently recommended if available within one hour of the ingestion and the ingestion is significant. Gastric lavage, syrup of ipecac, and whole bowel irrigation are rarely used.
Emergency treatment of cocaine-associated hyperthermia consists of administering a benzodiazepine sedation agent, such as diazepam (Valium) or lorazepam (Ativan) to enhance muscle relaxation and decrease sympathetic outflow from the central nervous system. Physical cooling is best accomplished with tepid water misting and cooling with a fan (convection and evaporation), which can be carried out easily in the field or hospital. There is no specific pharmacological antidote for cocaine overdose. The chest pain, high blood pressure, and increased heart rate caused by cocaine may be also treated with a benzodiazepine. Multiple and escalating dose of benzodiazepines may be necessary to achieve effect, which increases risk of over-sedation and respiratory depression. A comprehensive systematic review of all pharmacological treatments of cocaine cardiovascular toxicity revealed benzodiazepines may not always reliably lower heart rate and blood pressure.
Nitric-oxide mediated vasodilators, such as nitroglycerin and nitroprusside, are effective at lowering blood pressure and reversing coronary arterial vasoconstriction, but not heart rate. Nitroglycerin is useful for cocaine-induced chest pain, but the possibility of reflex tachycardia must be considered. Alpha-blockers such as phentolamine have been recommended and may be used to treat cocaine-induced hypertension and coronary arterial vasoconstriction, but these agents do not reduce heart rate. Furthermore, phentolamine is rarely used, not readily available in many emergency departments, and many present-day clinicians are unfamiliar with its use and titratability. Calcium channel blockers may also be used to treat hypertension and coronary arterial vasoconstriction, but fail to lower tachycardia based on all cocaine-related studies. Non-dihydropyridine calcium channels blockers such as diltiazem and verapamil are preferable, as dihydropyridine agents such as nifedipine have much higher risk of reflex tachycardia.
Agitated patients are best treated with benzodiazepines, but antipsychotics such as haloperidol and olanzapine may also be useful. The alpha-2 agonist dexmedetomidine may also be useful for treatment of agitation, but effects on heart rate and blood pressure are variable based on several studies and case reports. Lidocaine and intravenous lipid emulsion have been successfully used for serious ventricular tachyarrhythmias in several case reports.
The use of beta-blockers for cocaine cardiovascular toxicity has been subject to a relative contraindication by many clinicians for several years despite extremely limited evidence. The phenomenon of “unopposed alpha-stimulation,” in which blood pressure increases or coronary artery vasoconstriction worsens after blockade of beta-2 vasodilation in cocaine-abusing patients, is controversial. This rarely-encountered and unpredictable adverse effect has resulted in some clinicians advocating for an absolute contraindication of the use of all beta-blockers, including specific, non-specific, and mixed. Many clinicians have disregarded this dogma and administer beta-blockers for cocaine-related chest pain and acute coronary syndrome, especially when there is demand ischemia from uncontrolled tachycardia. Of the 1,744 total patients identified in the aforementioned systematic review, only 7 adverse events were from putative cases of “unopposed alpha-stimulation” due to propranolol (n=3), esmolol (n=3), and metoprolol (n=1). Some detractors of beta-blockers for cocaine-induced chest pain have cited minimal acute mortality and the short half-life of the drug, making it unnecessary to aggressively treat any associated tachycardia and hypertension. However, the long-term effect of cocaine use and development of heart failure, with early mortality, high morbidity, and tremendous demand on hospital utilization should be taken under consideration.
The mixed beta/alpha blocker labetalol has been shown to be safe and effective for treating concomitant cocaine-induced hypertension and tachycardia, without any “unopposed alpha-stimulation” adverse events recorded. The use of labetalol is approved by a recent AHA/ACC guideline for cocaine and methamphetamine patients with unstable angina/non-STEMI.
Meth mouth is very difficult to treat unless the patient stops using methamphetamine; persistent drug use makes changes in hygiene or nutrition practices unlikely. Many drug users lack access to dental treatment, and few are willing to participate in such a course of action, often because of poverty. Those who are willing to seek dental treatment often resist discussing their drug use. Providing dental treatment to individuals who use methamphetamine can also be dangerous, because the potential combination of local anesthetic and methamphetamine can cause serious heart problems. There is also an increased risk of serious side effects if opioid medications are used in the patient's treatment.
Treatment of meth mouth usually attempts to increase salivary flow, halt tooth decay, and encourage behavioral changes. Toothpaste with fluoride is very important to the restoration of dental health. Only prescription fluoride rinses can adequately treat the condition. Sialogogues, drugs that increase the amount of saliva in the mouth, can be used to treat dry mouth and protect against dental health problems. Pilocarpine and cevimeline are sialogogues approved by the Food and Drug Administration (FDA) to treat low salivation caused by Sjogren's syndrome and may have the potential to effectively treat dry mouth caused by methamphetamine use.
Education about oral hygiene for long-term methamphetamine users is sometimes required. Changes in diet are often necessary for recovering drug users that are receiving dental treatment, and the use of sugar-free gum may be beneficial. The consumption of water and the avoidance of beverages with a diuretic (dehydrating) effect can also help patients with meth mouth.
Treatment of people believed to have ATN or TN is usually begun with medication. The long-time first drug of choice for facial neuralgia has been carbamazepine, an anti-seizure agent. Due to the significant side-effects and hazards of this drug, others have recently come into common use as alternatives. These include oxcarbazepine, lamotrigine, and gabapentin. A positive patient response to one of these medications might be considered as supporting evidence for the diagnosis, which is otherwise made from medical history and pain presentation. There are no present medical tests to conclusively confirm TN or ATN.
If the anti-seizure drugs are found ineffective, one of the tricyclic antidepressant medications such as amitriptyline or nortriptyline, may be used. The tricyclic antidepressants are known to have dual action against both depression and neuropathic pain. Other drugs which may also be tried, either individually or in combination with an anti-seizure agent, include baclofen, pregabalin, anti-seizure drugs (to calm nerve endings), muscle relaxants, and opioid drugs such as oxycodone or an oxycodone/paracetamol combination.
For some people with ATN opioids may represent the only viable medical option which preserves quality of life and personal functioning. Although there is considerable controversy in public policy and practice in this branch of medicine, practice guidelines have long been available and published.
Therapists often classify patients with chemical dependencies as either interested or not interested in changing.
Treatments usually involve planning for specific ways to avoid the addictive stimulus, and therapeutic interventions intended to help a client learn healthier ways to find satisfaction. Clinical leaders in recent years have attempted to tailor intervention approaches to specific influences that affect addictive behavior, using therapeutic interviews in an effort to discover factors that led a person to embrace unhealthy, addictive sources of pleasure or relief from pain.
From the applied behavior analysis literature and the behavioral psychology literature, several evidenced-based intervention programs have emerged (1) behavioral marital therapy (2) community reinforcement approach (3) cue exposure therapy and (4) contingency management strategies. In addition, the same author suggests that social skills training adjunctive to inpatient treatment of alcohol dependence is probably efficacious.
Treatment for physical dependence depends upon the drug being withdrawn and often includes administration of another drug, especially for substances that can be dangerous when abruptly discontinued or when previous attempts have failed. Physical dependence is usually managed by a slow dose reduction over a period of weeks, months or sometimes longer depending on the drug, dose and the individual. A physical dependence on alcohol is often managed with a cross tolerant drug, such as long acting benzodiazepines to manage the alcohol withdrawal symptoms.
Alternative therapies, such as acupuncture, are used by some practitioners to alleviate the symptoms of drug addiction. In 1997, the American Medical Association (AMA) adopted as policy the following statement after a report on a number of alternative therapies including acupuncture:
There is little evidence to confirm the safety or efficacy of most alternative therapies. Much of the information currently known about these therapies makes it clear that many have not been shown to be efficacious. Well-designed, stringently controlled research should be done to evaluate the efficacy of alternative therapies.
Acupuncture has been shown to be no more effective than control treatments in the treatment of opiate dependence. Acupuncture, acupressure, laser therapy and electrostimulation have no demonstrated efficacy for smoking cessation.
Important phases in treating substance dependence include establishing coping mechanisms to deal with the hardships of withdrawal symptoms. With the correct approaches, the patient can live a healthier life.
Some online resources have served as aids to those working to overcome addictions. These websites allow struggling addicts, family members of addicts, and people who are in the recovery stage to seek or offer advice or support. Such sites provide an alternative, anonymized means for people impacted by addiction to seek help, social support, and information through chat rooms, forums, and blogs.
Behavioral programming is considered critical in helping those with addictions achieve abstinence. From the applied behavior analysis literature and the behavioral psychology literature, several evidence based intervention programs have emerged: (1) behavioral marital therapy; (2) community reinforcement approach; (3) cue exposure therapy; and (4) contingency management strategies. In addition, the same author suggest that Social skills training adjunctive to inpatient treatment of alcohol dependence is probably efficacious. Community reinforcement has both efficacy and effectiveness data. In addition, behavioral treatment such as community reinforcement and family training (CRAFT) have helped family members to get their loved ones into treatment. Motivational Intervention has also shown to be an effective treatment for substance dependence.