Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The preferred treatment of congenital glaucoma is surgical not medical. The initial procedures of choice are goniotomy or trabeculotomy if the cornea is clear, and trabeculectomy ab externo if the cornea is hazy. The success rates are similar for both procedures in patients with clear corneas. Trabeculectomy and shunt procedures should be reserved for those cases in which goniotomy or trabeculotomy has failed. Cyclophotocoagulation is necessary in some intractable cases but should be avoided whenever possible because of its potential adverse
effects on the lens and the retina.
Management of this condition is surgical and typically involves reducing the strength of the superior rectus muscle or anterior transposition of the inferior oblique muscle of the affected eyes.
Several different surgical procedures exist for the correction of DVD including: inferior oblique anteriorization, inferior oblique anteriorization plus resection, superior rectus recession, superior rectus recession plus posterior fixation suture, and inferior oblique myectomy, though there is insufficient evidence to determine which procedure results in the best outcomes for patients.
Depending on severity, therapies may range from topical or oral anti-inflammatories to irrigation and surgical repair.
While PEX itself is untreatable as of 2011, it is possible for doctors to minimize the damage to vision and to the optic nerves by the same medical techniques used to prevent glaucoma.
- Eyedrops. This is usually the first treatment method. Eyedrops can help reduce intraocular pressure within the eye. The medications within the eyedrops can include beta blockers (such as levobunolol or timolol) which slow the production of the aqueous humor. And other medications can increase its outflow, such as prostaglandin analogues (e.g. latanoprost). And these medicines can be used in various combinations. In most cases of glaucoma, eyedrops alone will suffice to solve the problem.
- Laser surgery. A further treatment is a type of laser therapy known as trabeculoplasty in which a high-energy laser beam is pointed at the trabecular meshwork to cause it to "remodel and open" and improve the outflows of the aqueous humor. These can be done as an outpatient procedure and take less than twenty minutes. One report suggests this procedure is usually effective.
- Eye surgery. Surgery is the treatment method of last resort if the other methods have not worked. It is usually effective at preventing glaucoma. Eye surgery on PEX patients can be subject to medical complications if the fibers which hold the lens have become weakened because of a buildup from the flakes; if the lens-holding fibers have weakened, then the lens may become loose, and complications from eye surgery may result. In such cases, it is recommended that surgeons act quickly to repair the phacodonesis before the lenses have dropped. A surgeon cuts an opening in the white portion of the eye known as the sclera, and removes a tiny area of the trabecular meshwork which enables the aqueous humor to discharge. This lowers the internal pressure within the eye and lessens the chance of future damage to the optic nerve. Cases with pseudophacodonesis and dislocated IOL have been increasing in number, according to one report. In cataract surgery, complications resulting from PEX include capsular rupture and vitreous loss.
- Drug therapy. There are speculations that if genetics plays a role in PEX, and if the specific genes involved can be identified, that possibly drugs can be developed to counteract these mutations or their effects. But such drugs have not been developed as of 2011.
Patients should continue to have regular eye examinations so that physicians can monitor pressure levels and check whether medicines are working.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Cataract removal can be performed at any stage and no longer requires ripening of the lens. Surgery is usually 'outpatient' and performed using local anesthesia. About 9 of 10 patients can achieve a corrected vision of 20/40 or better after surgery.
Several recent evaluations found that cataract surgery can meet expectations only when significant functional impairment due to cataracts exists before surgery. Visual function estimates such as VF-14 have been found to give more realistic estimates than visual acuity testing alone. In some developed countries, a trend to overuse cataract surgery has been noted, which may lead to disappointing results.
Phacoemulsification is the most widely used cataract surgery in the developed world. This procedure uses ultrasonic energy to emulsify the cataract lens. Phacoemulsification typically comprises six steps:
- Anaesthetic – The eye is numbed with either a subtenon injection around the eye (see: retrobulbar block) or topical anesthetic eye drops. The former also provides paralysis of the eye muscles.
- Corneal incision – Two cuts are made at the margin of the clear cornea to allow insertion of instruments into the eye.
- Capsulorhexis – A needle or small pair of forceps is used to create a circular hole in the capsule in which the lens sits.
- Phacoemulsification – A handheld ultrasonic probe is used to break up and emulsify the lens into liquid using the energy of ultrasound waves. The resulting 'emulsion' is sucked away.
- Irrigation and aspiration – The cortex, which is the soft outer layer of the cataract, is aspirated or sucked away. Fluid removed is continually replaced with a saline solution to prevent collapse of the structure of the anterior chamber (the front part of the eye).
- Lens insertion – A plastic, foldable lens is inserted into the capsular bag that formerly contained the natural lens. Some surgeons also inject an antibiotic into the eye to reduce the risk of infection. The final step is to inject salt water into the corneal wounds to cause the area to swell and seal the incision.
Extracapsular cataract extraction (ECCE) consists of removing the lens manually, but leaving the majority of the capsule intact. The lens is expressed through a 10- to 12-mm incision which is closed with sutures at the end of surgery. ECCE is less frequently performed than phacoemulsification, but can be useful when dealing with very hard cataracts or other situations where emulsification is problematic. Manual small incision cataract surgery (MSICS) has evolved from ECCE. In MSICS, the lens is removed through a self-sealing scleral tunnel wound in the sclera which, ideally, is watertight and does not require suturing. Although "small", the incision is still markedly larger than the portal in phacoemulsion. This surgery is increasingly popular in the developing world where access to phacoemulsification is still limited.
Intracapsular cataract extraction (ICCE) is rarely performed. The lens and surrounding capsule are removed in one piece through a large incision while pressure is applied to the vitreous membrane. The surgery has a high rate of complications.
If binocular vision is present and head position is correct, treatment is not obligatory.
Treatment is required for: visual symptoms, strabismus, or incorrect head position.
Acquired cases that have active inflammation of the superior oblique tendon may benefit from local corticosteroid injections in the region of the trochlea.
The goal of surgery is to restore free ocular rotations. Various surgical techniques have been used:
- Harold Brown advocated that the superior oblique tendon be stripped. A procedure named sheathotomy. The results of such a procedure are frequently unsatisfactory because of reformation of scar tissue.
- Tenotomy of the superior oblique tendon (with or with out a tendon spacer) has also been advocated. This has the disadvantage that it frequently produces a superior oblique paresis.
- Weakening of the inferior oblique muscle of the affected eye may be needed to compensate for iatrogenic fourth nerve palsy.
During surgery, a traction test is repeated until the eye rotations are free and the eye is anchored in an elevated adducted position for about two weeks after the surgery. This maneuver is intended to prevent the reformation of scar tissue in the same places. Normalization of head position may occur but restoration of full motility is seldom achieved. A second procedure may be required.
Mydriatic/cycloplegic agents, such as topical homatropine, which is similar in action to atropine, are useful in breaking and preventing the formation of posterior synechia by keeping the iris dilated and away from the crystalline lens. Dilation of the pupil in an eye with the synechia can cause the pupil to take an irregular, non-circular shape (Dyscoria) as shown in the photograph. If the pupil can be fully dilated during the treatment of iritis, the prognosis for recovery from synechia is good. This is a treatable status.
To subdue the inflammation, use topical corticosteroids. If the intra-ocular pressure is elevated then use a PGA such as Travatan Z.
In very severe cases of necrotizing scleritis, eye surgery must be performed to repair damaged corneal tissue in the eye and preserve the patient's vision. For less severe cases, nonsteroidal anti-inflammatory drugs, such as ibuprofen, are prescribed for pain relief. Scleritis itself is treated with an oral medication containing corticosteroids and an eye solution. In some cases, antibiotics are prescribed. Simply using eye drops will not treat scleritis. In more aggressive cases of scleritis, chemotherapy (such as systemic immunosuppressive therapy with such drugs as cyclophosphamide or azathioprine) may be used to treat the disease. If not treated, scleritis can cause blindness.
Treatments for corneal neovascularization are predominately off-lab with a multitude of complications as a result. The desired results from medical therapy may not always occur, ergo an invasive procedure may be needed to prevent further decrease in corneal avascularity.
For contact lenses related hypoxia, ceasing the use of contact lenses is the first step until corneal neovascularization is addressed by a physician. Modern rigid gas permeable and silicon hydrogel contact lenses have a much higher level of oxygen transmissibility, making them effective alternatives to help prevent corneal neovascularization.
Topical administration of steroids and non-steroid anti-inflammatory drugs are first-line treatment for individuals with CNV. The administration of steroids can increase the risk of infection, glaucoma, cataracts, herpes simplex recurrence. The anti-inflammatory drugs, however, increase the risk of corneal ulceration and melting.
Since VEGF plays an important role in vasculogenesis and pathologic neovascularization associated with eye diseases, a potential treatment for CNV is to inhibit VEGF activity by competing the binding of VEGF with specific neutralizing anti-VEGF antibody. VEGF inhibitors include pegatanib sodium, ranibizumab, and off-label bevacizumab are currently used for treatment of various retinal disease. Anti-VEGF antibodies such as the application of ranibizumab or bevacizumab have has been shown to reduce corneal neovascularization. Both ranibizumab and bevacizumab uses the same mechanism and inhibits all iso-forms of VEGF. The significant reduction in invasion of in-growth blood vessels in terms of neovascular area and vessel caliber suggests that treatment with ranibizumab induces thinning of the blood vessels, however, there's no significant change of the blood vessel's length. Using anti-VEGF antibodies to treat CNV has some limitations such as it is not a cure and may require repeated treatments to maintain positive effects over time. Topical and/or subconjunctival administration of bevaicizumab or ranibizumab have demonstrated short-term safety and efficacy, however long term effects have not been documented. Anti-VEGF therapy is currently an experimental treatment.
If the cornea is inflamed via corneal neovascularization, the suppression of enzymes can block CNV by compromising with corneal structural integrity. Corneal neovascularization can be suppressed with a combination of orally administration of doxycycline and with topical corticosteroid.
Surgical Options
Invasive solutions for corneal neovascularization are reserved when the medical therapies do not provide the desired results.
Invading blood tissues and ablating tissues in the cornea can be obstructed by the use of laser treatments such as Argon and s. Irradiation and/or damages to adjacent tissues caused by the procedure can result in corneal hemorrhage and corneal thinning. Obstruction of the blood vessels can be unsuccessful due to the depth, size, and, high blood flow rate of the vessels. In conjunction, thermal damage from the lasers can trigger inflammatory response which can exaggerate the neovascularization.
An effective treatment is photodynamic therapy, however, this treatment has limited clinical acceptance due to high costs and many potential complications involved that are also related to laser ablation. Complications can include irradiation from previously injected photosensitive dye inducing apoptosis and necrosis of the endothelium and basement membrane.
Diathermy and cautery is a treatment where an electrolysis needle is inserted into the feeder vessels in the limbus. The vessels are obstructed by a coagulating current through the use of unipolar diathermy unit or by thermal cautery.
In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.
Some congenital cataracts are too small to affect vision, therefore no surgery or treatment will be done. If they are superficial and small, an ophthalmologist will continue to monitor them throughout a patient's life. Commonly, a patient with small congenital cataracts that do not affect vision will eventually be affected later in life; generally this will take decades to occur.
Reduction of neovascularization has been achieved in rats by the topical instillation of commercially available triamcinolone and doxycycline.
Some evidence exists to suggest that the Angiotensin II receptor blocker drug telmisartan will prevent corneal neovascularization.
Recent treatment developments include topical application of bevacizumab, an anti-VEGF.
Exophthalmos is commonly found in dogs. It is seen in brachycephalic (short-nosed) dog breeds because of the shallow orbit. However, it can lead to keratitis secondary to exposure of the cornea. Exophthalmos is commonly seen in the Pug, Boston Terrier, Pekingese, and Shih Tzu.
It is a common result of head trauma and pressure exerted on the front of the neck too hard in dogs. In cats, eye proptosis is uncommon and is often accompanied by facial fractures.
About 40% of proptosed eyes retain vision after being replaced in the orbit, but in cats very few retain vision. Replacement of the eye requires general anesthesia. The eyelids are pulled outward, and the eye is gently pushed back into place. The eyelids are sewn together in a procedure known as tarsorrhaphy for about five days to keep the eye in place. Replaced eyes have a higher rate of keratoconjunctivitis sicca and keratitis and often require lifelong treatment. If the damage is severe, the eye is removed in a relatively simple surgery known as enucleation of the eye.
The prognosis for a replaced eye is determined by the extent of damage to the cornea and sclera, the presence or absence of a pupillary light reflex, and the presence of ruptured rectus muscles. The rectus muscles normally help hold the eye in place and direct eye movement. Rupture of more than two rectus muscles usually requires the eye to be removed, because significant blood vessel and nerve damage also usually occurs. Compared to brachycephalic breeds, dochilocephalic (long-nosed) breeds usually have more trauma to the eye and its surrounding structures, so the prognosis is worse .
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
DVD is often mistaken for over-action of the inferior oblique extra-ocular muscles. DVD can be revealed on ocular movement testing when one eye is occluded by the nose on lateral gaze. This eye will then elevate, simulating an inferior oblique over action. However, in a unilateral case, overaction of the superior rectus muscle in the unaffected dominant eye, can also be a causing factor as well as causing a V pattern exophoria.
Oral Antibiotics: Ophthalmologists or optometrists may prescribe a low-dose, oral antibiotic such as Doxycycline.
Topical Antibiotics: If prescribed, topical creams or ointments can be applied after the cleansing of the lid margin. A small amount of antibiotic ophthalmic ointment is spread along the lid fissure with a swab or fingertip, while the eyes are closed. It is prescribed for use prior to bedtime to avoid blurred vision. Another method to reduce side effects of blepharitis are antibiotics such as erythromycin or sulfacetamide, which are used via eye drops, creams, or ointments on the eyelid margin. blepharitis caused by Demodex mites can be treated using a diluted solution of tea tree oil, via application by a cotton swab, for 5–10 minutes per day.
Steroid eyedrops/ointments: Eye drops or ointments containing corticosteroids are frequently used in conjunction with antibiotics and can reduce eyelid inflammation.
Several treatments have been attempted for CRAS; however, none show definitive improvement in outcomes. The Undersea and Hyperbaric Medical Society lists Central Retinal Artery Occlusion (CRAO) as an approved indication for Hyperbaric Oxygen Therapy. This a treatment for CRAO that is covered by medical insurance in North America. Other treatments include ocular massage, anterior chamber paracentesis, and inhalation therapy of a mixture of 5% carbon dioxide and 95% oxygen.
Lens subluxation is also seen in dogs and is characterized by a partial displacement of the lens. It can be recognized by trembling of the iris (iridodonesis) or lens (phacodonesis) and the presence of an aphakic crescent (an area of the pupil where the lens is absent). Other signs of lens subluxation include mild conjunctival redness, vitreous humour degeneration, prolapse of the vitreous into the anterior chamber, and an increase or decrease of anterior chamber depth. Removal of the lens before it completely luxates into the anterior chamber may prevent secondary glaucoma. A nonsurgical alternative involves the use of a miotic to constrict the pupil and prevent the lens from luxating into the anterior chamber.
During an acute flare-up, therapy is targeted at reducing the inflammation present, and dilating the pupil. Mydriasis is important, as pupillary constriction is the primary reason for pain. Anti-inflammatory therapy is usually given both systemically, often in the form of flunixin meglumine, and topically, as prednisolone acetate. The mydriatic of choice is atropine. In the periods between acute attacks, no therapy has been shown to be beneficial.
A symblepharon is a partial or complete adhesion of the palpebral conjunctiva of the eyelid to the bulbar conjunctiva of the eyeball. It results either from disease (conjunctival sequelae of trachoma) or trauma. Cicatricial pemphigoid and, in severe cases, rosacea may cause symblepharon. It is rarely congenital. and its treament
1 ocular movements restricted
2 diplopia
3 lagophthalmos
4 cosmetic cause
types.
Anterior, adhesion in Anterior part
Posterior, adhesion in only fornices
total, adhesion involves whole lens
Complications.
prophylaxis, 1 sweeping a glass rod around fornices several times a day
2 therapeutic soft contact lens
curative treatment t, 1 mobilising surrounding cornea, 2 conjunctival or buccal mucosa graft, 3 amniotic membrane transplant
Quick determination of the cause may lead to urgent measures to save the eye and life of the patient. High clinical suspicion should be kept for painless vision loss in patients with atherosclerosis, deep venous thrombosis, atrial fibrillation, pulmonary thromboembolism or other previous embolic episodes. Those caused by a carotid artery embolism or occlusion have the potential for further stroke by detachment of embolus and migration to an end-artery of the brain. Hence, proper steps to prevent such an eventuality need to be taken.
Retinal arterial occlusion is an ophthalmic emergency, and prompt treatment is essential. Completely anoxic retina in animal models causes irreversible damage in about 90 minutes. Nonspecific methods to increase blood flow and dislodge emboli include digital massage, 500 mg IV acetazolamide and 100 mg IV methylprednisolone (for possible arteritis). Additional measures include paracentesis of aqueous humor to decrease IOP acutely. An ESR should be drawn to detect possible giant cell arteritis. Improvement can be determined by visual acuity, visual field testing, and by ophthalmoscopic examination.
At a later stage, pan-retinal photocoagulation (PRP) with an argon laser appears effective in reducing the neovascular components and their sequelae.
The visual prognosis for ocular ischemic syndrome varies from usually poor to fair, depending on speed and effectiveness of the intervention. However, prompt diagnosis is crucial as the condition may be a presenting sign of serious cerebrovascular and ischemic heart diseases.
In 2009, the Undersea and Hyperbaric Medical Society added "central retinal artery occlusion" to their list of approved indications for hyperbaric oxygen (HBO). When used as an adjunctive therapy, the edema reducing properties of HBO, along with down regulation of inflammatory cytokines may contribute to the improvement in vision. Prevention of vision loss requires that certain conditions be met: the treatment be started before irreversible damage has occurred (over 24 hours), the occlusion must not also occur at the ophthalmic artery, and treatment must continue until the inner layers of the retina are again oxygenated by the retinal arteries.
Exophthalmos (also called exophthalmus, exophthalmia, proptosis, or exorbitism) is a bulging of the eye anteriorly out of the orbit. Exophthalmos can be either bilateral (as is often seen in Graves' disease) or unilateral (as is often seen in an orbital tumor). Complete or partial dislocation from the orbit is also possible from trauma or swelling of surrounding tissue resulting from trauma.
In the case of Graves' disease, the displacement of the eye is due to abnormal connective tissue deposition in the orbit and extraocular muscles which can be visualized by CT or MRI.
If left untreated, exophthalmos can cause the eyelids to fail to close during sleep leading to corneal dryness and damage. Another possible complication would be a form of redness or irritation called "Superior limbic keratoconjunctivitis", where the area above the cornea becomes inflamed as a result of increased friction when blinking. The process that is causing the displacement of the eye may also compress the optic nerve or ophthalmic artery, leading to blindness.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
The acute uveitis phase of VKH is usually responsive to high-dose oral corticosteroids; parenteral administration is usually not required. However, ocular complications may require an subtenon or intravitreous injection of corticosteroids or bevacizumab. In refractory situations, other immunosuppressives such as cyclosporine, or tacrolimus, antimetabolites (azathioprine, mycophenolate mofetil or methotrexate), or biological agents such as intravenous immunoglobulins (IVIG) or infliximab may be needed.