Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The infection is treated with antibiotics. Tetracyclines and chloramphenicol are the drugs of choice for treating patients with psittacosis. Most persons respond to oral therapy doxycycline, tetracycline hydrochloride, or chloramphenicol palmitate. For initial treatment of severely ill patients, doxycycline hyclate may be administered intravenously. Remission of symptoms usually is evident within 48–72 hours. However, relapse can occur, and treatment must continue for at least 10–14 days after fever abates.
In the majority of immunocompetent individuals, histoplasmosis resolves without any treatment. Antifungal medications are used to treat severe cases of acute histoplasmosis and all cases of chronic and disseminated disease. Typical treatment of severe disease first involves treatment with amphotericin B, followed by oral itraconazole.
Liposomal preparations of amphotericin B are more effective than deoxycholate preparations. The liposomal preparation is preferred in patients that might be at risk of nephrotoxicity, although all preparations of amphotericin B have risk of nephrotoxicity. Individuals taking amphotericin B are monitored for renal function.
Treatment with itraconazole will need to continue for at least a year in severe cases, while in acute pulmonary histoplasmosis, 6 to 12 weeks treatment is sufficient. Alternatives to itraconazole are posaconazole, voriconazole, and fluconazole. Individuals taking itraconazole are monitored for hepatic function.
Among the categories of bacteria most known to infect patients are the category MRSA (resistant strain of "S. aureus"), member of gram-positive bacteria and "Acinetobacter" ("A. baumannii"), which is gram-negative. While antibiotic drugs to treat diseases caused by gram-positive MRSA are available, few effective drugs are available for "Acinetobacter". "Acinetobacter" bacteria are evolving and becoming immune to existing antibiotics, so in many cases, polymyxin-type antibacterials need to be used. "In many respects it’s far worse than MRSA," said a specialist at Case Western Reserve University.
Another growing disease, especially prevalent in New York City hospitals, is the drug-resistant, gram-negative "Klebsiella pneumoniae". An estimated more than 20% of the "Klebsiella" infections in Brooklyn hospitals "are now resistant to virtually all modern antibiotics, and those supergerms are now spreading worldwide."
The bacteria, classified as gram-negative because of their reaction to the Gram stain test, can cause severe pneumonia and infections of the urinary tract, bloodstream, and other parts of the body. Their cell structures make them more difficult to attack with antibiotics than gram-positive organisms like MRSA. In some cases, antibiotic resistance is spreading to gram-negative bacteria that can infect people outside the hospital. "For gram-positives we need better drugs; for gram-negatives we need any drugs," said Dr. Brad Spellberg, an infectious-disease specialist at Harbor-UCLA Medical Center, and the author of "Rising Plague", a book about drug-resistant pathogens.
One-third of nosocomial infections are considered preventable. The CDC estimates 2 million people in the United States are infected annually by hospital-acquired infections, resulting in 20,000 deaths. The most common nosocomial infections are of the urinary tract, surgical site and various pneumonias.
Follow standard precautions to help prevent the spread of bloodborne pathogens and other diseases whenever there is a risk of exposure to blood or other bodily fluids. Standard precautions include maintaining personal hygiene and using personal protective equipment (PPE), engineering controls, and work practice controls among others. Always avoid contact with blood and other bodily fluids. Wear disposable gloves when providing care, particularly if you may come into contact with blood or bodily fluids. Dispose properly of gloves and change gloves when providing care to a new patient. Use needles with safety devices to help prevent needlestick injury and exposure to bloodborne pathogens.
A hierarchy of controls can help to prevent environmental and occupational exposures and subsequent diseases. These include:
Elimination: Physically remove hazards, including needles that lack a safety device. Additionally, eliminate the use of needle devices whenever safe and effective alternatives are available.
Substitution: Replace needles without safety devices with ones that have a safety feature built in. This has been shown to reduce bloodborne diseases transmitted via needlestick injuries.
Engineering controls: Isolate people from the hazard by providing sharps containers for workers to immediately place needles in after use.
Administrative controls: Change the way people work by creating a culture of safety such as avoiding recapping or bending needles that may be contaminated and promptly disposing of used needle devices and other sharps.
Personal protective equipment: Protect workers with PPE such as gloves and masks to avoid transmission of blood and other bodily fluids.
The methods used differ from country to country (definitions used, type of nosocomial infections covered, health units surveyed, inclusion or exclusion of imported infections, etc.), so the international comparisons of nosocomial infection rates should be made with the utmost care.
Needle exchange programs (NEPs) are an attempt to reduce the spread of bloodborne diseases between intravenous drug users. They often also provide addiction counseling services, infectious disease testing, and in some cases mental health care and/or other case management. NEPs acquired their name as they were initially places where intravenous (IV) illicit substance users were provided with clean, unused needles in exchange for their used needles. This allows for proper disposal of the needles. Empirical studies confirm the benefits of NEPs. NEPs can affect behaviors that result in the transmission of HIV. These behaviors include decreased sharing of used syringes, which reduces contaminated syringes from circulation and replaces them with sterile ones, among other risk reductions.
Treatment is supportive as the infection is frequently self-limiting. Antipyretics (i.e., fever reducers) are commonly used. The rash usually does not itch but can be mildly painful. There is no specific therapy.
There is currently no effective marburgvirus-specific therapy for MVD. Treatment is primarily supportive in nature and includes minimizing invasive procedures, balancing fluids and electrolytes to counter dehydration, administration of anticoagulants early in infection to prevent or control disseminated intravascular coagulation, administration of procoagulants late in infection to control hemorrhaging, maintaining oxygen levels, pain management, and administration of antibiotics or antimycotics to treat secondary infections. Experimentally, recombinant vesicular stomatitis Indiana virus (VSIV) expressing the glycoprotein of MARV has been used successfully in nonhuman primate models as post-exposure prophylaxis. Novel, very promising, experimental therapeutic regimens rely on antisense technology: phosphorodiamidate morpholino oligomers (PMOs) targeting the MARV genome could prevent disease in nonhuman primates. Leading medications from Sarepta and Tekmira both have been successfully used in European humans as well as primates.
Treatment of sporotrichosis depends on the severity and location of the disease. The following are treatment options for this condition:
- Saturated potassium iodide solution
- Itraconazole (Sporanox) and fluconazole
- Amphotericin B
- Terbinafine
- Newer triazoles
- Surgery
After exposure to the hepatitis B virus (HBV), appropriate and timely prophylaxis can prevent infection and subsequent development of chronic infection or liver disease. The mainstay of PEP is the hepatitis B vaccine; in certain circumstances, hepatitis B immunoglobulin is recommended for added protection.
Immunoglobulin and antivirals are not recommended for hepatitis C PEP. There is no vaccine for HCV; therefore, post-exposure treatment consists of monitoring for seroconversion. There is limited evidence for the use of antivirals in acute hepatitis C infection.
ILI occurs in some horses after intramuscular injection of vaccines. For these horses, light exercise speeds resolution of the ILI. Non-steroidal anti-inflammatory drugs (NSAIDs) may be given with the vaccine.
Chronic exposure to human nail dust is a serious occupational hazard that can be minimized by not producing such dust. Best practice is to avoid electrical debridement or burring of mycotic nails unless the treatment is necessary. When the procedure is necessary, it is possible to reduce exposure by using nail dust extractors, local exhaust, good housekeeping techniques, personal protective equipment such as gloves, glasses or goggles, face shields, and an appropriately fitted disposable respirators to protect against the hazards of nail dust and flying debris.
There have been numerous accounts of patients with "trichophyton" fungal infections and associated asthma, which further substantiates the likelihood of respiratory disease transmission to the healthcare provider being exposed to the microbe-laden nail dust In 1975, a dermatophyte fungal infection was described in a patient with severe tinea. The resulting treatment for mycosis improved the patient’s asthmatic condition. The antifungal treatment of many other "trichophyton" foot infections has alleviated symptoms of hypersensitivity, asthma, and rhinitis.
Early antibiotic treatment of anthrax is essential; delay significantly lessens chances for survival.
Treatment for anthrax infection and other bacterial infections includes large doses of intravenous and oral antibiotics, such as fluoroquinolones (ciprofloxacin), doxycycline, erythromycin, vancomycin, or penicillin. FDA-approved agents include ciprofloxacin, doxycycline, and penicillin.
In possible cases of pulmonary anthrax, early antibiotic prophylaxis treatment is crucial to prevent possible death.
In recent years, many attempts have been made to develop new drugs against anthrax, but existing drugs are effective if treatment is started soon enough.
In May 2009, Human Genome Sciences submitted a biologic license application (BLA, permission to market) for its new drug, raxibacumab (brand name ABthrax) intended for emergency treatment of inhaled anthrax. On 14 December 2012, the US Food and Drug Administration approved raxibacumab injection to treat inhalational anthrax. Raxibacumab is a monoclonal antibody that neutralizes toxins produced by "B. anthracis". On March, 2016, FDA approved a second anthrax treatment using a monoclonal antibody which neutralizes the toxins produced by "B. anthracis". Obiltoxaximab is approved to treat inhalational anthrax in conjunction with appropriate antibacterial drugs, and for prevention when alternative therapies are not available or appropriate.
Short-acting beta-agonists like salbutamol or terbutaline or long-acting beta-agonists like salmeterol and formoterol dilate airways which relieve the symptoms thus reducing the severity of the reaction. Some patients also use it just before work to avoid a drop in the FEV.
Anti-inflammatory agents like corticosteroids, LKTRA or mast cell stabilizers can also be used depending on the severity of the case.
Cutaneous lesions can become superinfected with bacteria, resulting in cellulitis.
The management of rhinitis depends on the underlying cause.
For allergic rhinitis, intranasal corticosteroids are recommended. For severe symptoms intranasal antihistamines may be added.
There is no cure for berylliosis; the goals of treatment are to reduce symptoms and slow the progression of disease.
Although the evidence that stopping exposure to beryllium decreases progression of the disease, it is still considered to be an accepted approach to treatment in any stage of disease.
People with early stages of disease, without lung function abnormalities or clinical symptoms, are periodically monitored with physical exams, pulmonary function testing and radiography.
Once clinical symptoms or significant abnormalities in pulmonary function testing appear, treatments include oxygen and oral corticosteroids and whatever supportive therapy is required.
Prevention measures include avoidance of the irritant through its removal from the workplace or through technical shielding by the use of potent irritants in closed systems or automation, irritant replacement or removal and personal protection of the workers.
Recovery is directly dependent on the duration and level of exposure to the causative agent. Depending on the severity of the case, the condition of the patient can improve dramatically during the first year after removal from exposure.
Three basic types of procedures are used for treating the affected workers: reducing a worker's exposure, removing a worker from the environment with the asthma-causing agent, and treatment with asthma medications. Completely stopping exposure is more effective treatment than reducing exposure. By reducing exposure, the probability of suffering another reaction is lowered. Methods of reducing exposure include transferring an affected worker to a position without the relevant asthmagen, use of respiratory protection, and engineering controls. In 1984 innovator David Cornell discovered and invented effective control equipment in the UK for the removal of many harmful workplace fumes. 'BOFA' extraction products are now found in over 100 countries worldwide.
People affected by occupational asthma that occurred after a latency period, whether a few months or years, should be immediately removed from exposure to the causative agent. However, this can entail severe socio-economic consequences for the worker as well as the employer due to loss of job, unemployment, compensation issues, quasi-permanent medical expenditures, and hiring and re-training of new personnel. This can be mitigated by transferring the worker within a company.
The course of treatment of fire breather's pneumonia remains controversial. Administration of bronchodilators, corticosteroids, and prophylactic antibiotics to prevent secondary infection, is a common course of treatment. Some studies suggest that steroids may improve outcomes in severely affected individuals, yet these data are only based on a limited number of patients. The use of gastric decontamination to prevent subsequent pulmonary injury from hydrocarbon ingestion is controversial. It may have potential benefit in large (> 30 cc), intentional ingestion of compounds with systemic toxicity.
Prognosis after peak symptoms is typically good, with most patients making a full recovery in weeks to months.
Since marburgviruses are not spreading via aerosol, the most straightforward prevention method during MVD outbreaks is to avoid direct (skin-to-skin) contact with patients, their excretions and body fluids, or possibly contaminated materials and utensils. Patients ought to be isolated but still have the right to be visited by family members. Medical staff should be trained and apply strict barrier nursing techniques (disposable face mask, gloves, goggles, and a gown at all times). Traditional burial rituals, especially those requiring embalming of bodies, ought to be discouraged or modified, ideally with the help of local traditional healers.
Ataxia usually goes away without any treatment. In cases where an underlying cause is identified, your doctor will treat the underlying cause. In extremely rare cases, you may have continuing and disabling symptoms. Treatment includes corticosteroids, Intravenous immunoglobulin, or plasma exchange therapy. Drug treatment to improve muscle coordination has a low success rate. However, the following drugs may be prescribed: clonazepam, amantadine, gabapentin, or buspirone. Occupational or physical therapy may also alleviate lack of coordination. Changes to diet and nutritional supplements may also help. Treatment will depend on the cause. If the acute cerebellar ataxia is due to bleeding, surgery may be needed. For a stroke, medication to thin the blood can be given. Infections may need to be treated with antibiotics. Steroids may be needed for swelling (inflammation) of the cerebellum (such as from multiple sclerosis). Cerebellar ataxia caused by a recent viral infection may not need treatment.