Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no cure for berylliosis; the goals of treatment are to reduce symptoms and slow the progression of disease.
Although the evidence that stopping exposure to beryllium decreases progression of the disease, it is still considered to be an accepted approach to treatment in any stage of disease.
People with early stages of disease, without lung function abnormalities or clinical symptoms, are periodically monitored with physical exams, pulmonary function testing and radiography.
Once clinical symptoms or significant abnormalities in pulmonary function testing appear, treatments include oxygen and oral corticosteroids and whatever supportive therapy is required.
Short-acting beta-agonists like salbutamol or terbutaline or long-acting beta-agonists like salmeterol and formoterol dilate airways which relieve the symptoms thus reducing the severity of the reaction. Some patients also use it just before work to avoid a drop in the FEV.
Anti-inflammatory agents like corticosteroids, LKTRA or mast cell stabilizers can also be used depending on the severity of the case.
Therapy is supportive and includes removal from further beryllium exposure. For very severe cases mechanical ventilation may be required.
Recovery is directly dependent on the duration and level of exposure to the causative agent. Depending on the severity of the case, the condition of the patient can improve dramatically during the first year after removal from exposure.
Three basic types of procedures are used for treating the affected workers: reducing a worker's exposure, removing a worker from the environment with the asthma-causing agent, and treatment with asthma medications. Completely stopping exposure is more effective treatment than reducing exposure. By reducing exposure, the probability of suffering another reaction is lowered. Methods of reducing exposure include transferring an affected worker to a position without the relevant asthmagen, use of respiratory protection, and engineering controls. In 1984 innovator David Cornell discovered and invented effective control equipment in the UK for the removal of many harmful workplace fumes. 'BOFA' extraction products are now found in over 100 countries worldwide.
People affected by occupational asthma that occurred after a latency period, whether a few months or years, should be immediately removed from exposure to the causative agent. However, this can entail severe socio-economic consequences for the worker as well as the employer due to loss of job, unemployment, compensation issues, quasi-permanent medical expenditures, and hiring and re-training of new personnel. This can be mitigated by transferring the worker within a company.
Prevention measures include avoidance of the irritant through its removal from the workplace or through technical shielding by the use of potent irritants in closed systems or automation, irritant replacement or removal and personal protection of the workers.
In order to better prevent and control occupational disease, most countries revise and update their related laws, most of them greatly increasing the penalties in case of breaches of the occupational disease laws. Occupational disease prevention, in general legally regulated, is part of good supply chain management and enables companies to design and ensure supply chain social compliance schemes as well as monitor their implementation to identify and prevent occupational disease hazards.
Typical levels of beryllium that industries may release into the air are of the order of , averaged over a 30-day period, or of workroom air for an 8-hour work shift. Compliance with the current U.S. Occupational Safety and Health Administration (OSHA) permissible exposure limit for beryllium of has been determined to be inadequate to protect workers from developing beryllium sensitization and CBD. The American Conference of Governmental Industrial Hygienists (ACGIH), which is an independent organization of experts in the field of occupational health, has proposed a threshold limit value (TLV) of in a 2006 Notice of Intended Change (NIC). This TLV is 40 times lower than the current OSHA permissible exposure limit, reflecting the ACGIH analysis of best available peer-reviewed research data concerning how little airborne beryllium is required to cause sensitization and CBD.
Because it can be difficult to control industrial exposures to beryllium, it is advisable to use any methods possible to reduce airborne and surface contamination by beryllium, to minimize the use of beryllium and beryllium-containing alloys whenever possible, and to educate people about the potential hazards if they are likely to encounter beryllium dust or fumes. It is important to damp wipe meallographic preparation equipment to prevent accumulation of dry particles. Sectioning, grinding, and polishing must be performed under sufficiently vented hoods equipped with special filters.
On 29 January 2009, the Los Alamos National Laboratory announced it was notifying nearly 2,000 current and former employees and visitors that they may have been exposed to beryllium in the lab and may be at risk of disease. Concern over possible exposure to the material was first raised in November 2008, when a box containing beryllium was received at the laboratory's short-term storage facility.
Silicosis is a permanent disease with no cure. Treatment options currently available focus on alleviating the symptoms and preventing any further progress of the condition. These include:
- Stopping further exposure to airborne silica, silica dust and other lung irritants, including tobacco smoking.
- Cough suppressants.
- Antibiotics for bacterial lung infection.
- TB prophylaxis for those with positive tuberculin skin test or IGRA blood test.
- Prolonged anti-tuberculosis (multi-drug regimen) for those with active TB.
- Chest physiotherapy to help the bronchial drainage of mucus.
- Oxygen administration to treat hypoxemia, if present.
- Bronchodilators to facilitate breathing.
- Lung transplantation to replace the damaged lung tissue is the most effective treatment, but is associated with severe risks of its own.
- For acute silicosis, bronchoalveolar lavage may alleviate symptoms, but does not decrease overall mortality.
Experimental treatments include:
- Inhalation of powdered aluminium, d-penicillamine and polyvinyl pyridine-N-oxide.
- Corticosteroid therapy.
- Chinese Herbal Kombucha
- The herbal extract tetrandrine may slow progression of silicosis.
Specific treatments for acute pesticide poisoning are often dependent on the pesticide or class of pesticide responsible for the poisoning. However, there are basic management techniques that are applicable to most acute poisonings, including skin decontamination, airway protection, gastrointestinal decontamination, and seizure treatment.
Decontamination of the skin is performed while other life-saving measures are taking place. Clothing is removed, the patient is showered with soap and water, and the hair is shampooed to remove chemicals from the skin and hair. The eyes are flushed with water for 10–15 minutes. The patient is intubated and oxygen administered, if necessary. In more severe cases, pulmonary ventilation must sometimes be supported mechanically. Seizures are typically managed with lorazepam, phenytoin and phenobarbitol, or diazepam (particularly for organochlorine poisonings).
Gastric lavage is not recommended to be used routinely in pesticide poisoning management, as clinical benefit has not been confirmed in controlled studies; it is indicated only when the patient has ingested a potentially life-threatening amount of poison and presents within 60 minutes of ingestion. An orogastric tube is inserted and the stomach is flushed with saline to try to remove the poison. If the patient is neurologically impaired, a cuffed endotracheal tube inserted beforehand for airway protection. Studies of poison recovery at 60 minutes have shown recovery of 8%–32%. However, there is also evidence that lavage may flush the material into the small intestine, increasing absorption. Lavage is contra-indicated in cases of hydrocarbon ingestion.
Activated charcoal is sometimes administered as it has been shown to be successful with some pesticides. Studies have shown that it can reduce the amount absorbed if given within 60 minutes, though there is not enough data to determine if it is effective if time from ingestion is prolonged. Syrup of ipecac is not recommended for most pesticide poisonings because of potential interference with other antidotes and regurgitation increasing exposure of the esophagus and oral area to the pesticide.
Urinary alkalinisation has been used in acute poisonings from chlorophenoxy herbicides (such as 2,4-D, MCPA, 2,4,5-T and mecoprop); however, evidence to support its use is poor.
Prevention measures include avoidance of the irritant through its removal from the workplace or through technical shielding by the use of potent irritants in closed systems or automation, irritant replacement or removal and personal protection of the workers.
Occupational skin diseases are ranked among the top five occupational diseases in many countries.
Occupational skin diseases and conditions are generally caused by chemicals and having wet hands for long periods while at work. Eczema is by far the most common, but urticaria, sunburn and skin cancer are also of concern.
Contact dermatitis due to irritation is inflammation of the skin which results from a contact with an irritant. It has been observed that this type of dermatitis does not require prior sensitization of the immune system. There have been studies to support that past or present atopic dermatitis is a risk factor for this type of dermatitis. Common irritants include detergents, acids, alkalies, oils, organic solvents and reducing agents.
The acute form of this dermatitis develops on exposure of the skin to a strong irritant or caustic chemical. This exposure can occur as a result of accident at a workplace. The irritant reaction starts to increase in its intensity within minutes to hours of exposure to the irritant and reaches its peak quickly. After the reaction has reached its peak level, it starts to heal. This process is known as decrescendo phenomenon. The most frequent potent irritants leading to this type of dermatitis are acids and alkaline solutions. The symptoms include redness and swelling of the skin along with the formation of blisters.
The chronic form occurs as a result of repeated exposure of the skin to weak irritants over long periods of time.
Clinical manifestations of the contact dermatitis are also modified by external factors such as environmental factors (mechanical pressure, temperature, and humidity) and predisposing characteristics of the individual (age, sex, ethnic origin, preexisting skin disease, atopic skin diathesis, and anatomic region exposed.
Another occupational skin disease is Glove related hand urticaria. It has been reported as an occupational problem among the health care workers. This type of hand urticaria is believed to be caused by repeated wearing and removal of the gloves. The reaction is caused by the latex or the nitrile present in the gloves.
High-risk occupations include:
- Hairdressing
- Catering
- Healthcare
- Printing
- Metal machining
- Motor vehicle repair
- Construction
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
Acute beryllium poisoning is an occupational disease. Relevant occupations are those where beryllium is mined, processed or converted into metal alloys, or where machining of metals containing beryllium or recycling of scrap alloys occurs.
Beryllium is regarded extraordinarily hazardous to health upon enough amounts of dust, mists, or fumes consisting fragments little enough to inhale (typically 10µm or less). Metallographic preparation equipment and laboratory work surfaces must be damp wiped occasionally to inhibit buildup of particles. Cutting, grinding, and polishing procedures which manufacture dusts or fumes must be handled within sufficiently vented coverings supplied with particular filters.
There have been numerous accounts of patients with "trichophyton" fungal infections and associated asthma, which further substantiates the likelihood of respiratory disease transmission to the healthcare provider being exposed to the microbe-laden nail dust In 1975, a dermatophyte fungal infection was described in a patient with severe tinea. The resulting treatment for mycosis improved the patient’s asthmatic condition. The antifungal treatment of many other "trichophyton" foot infections has alleviated symptoms of hypersensitivity, asthma, and rhinitis.
Immunoglobulin and antivirals are not recommended for hepatitis C PEP. There is no vaccine for HCV; therefore, post-exposure treatment consists of monitoring for seroconversion. There is limited evidence for the use of antivirals in acute hepatitis C infection.
Chronic exposure to human nail dust is a serious occupational hazard that can be minimized by not producing such dust. Best practice is to avoid electrical debridement or burring of mycotic nails unless the treatment is necessary. When the procedure is necessary, it is possible to reduce exposure by using nail dust extractors, local exhaust, good housekeeping techniques, personal protective equipment such as gloves, glasses or goggles, face shields, and an appropriately fitted disposable respirators to protect against the hazards of nail dust and flying debris.
If the status of the source patient is unknown, their blood should be tested for HIV as soon as possible following exposure. The injured person can start antiretroviral drugs for PEP as soon as possible, preferably within three days of exposure. There is no vaccine for HIV. When the source of blood is known to be HIV positive, a 3-drug regimen is recommended by the CDC; those exposed to blood with a low viral load or otherwise low risk can use a 2-drug protocol. The antivirals are taken for 4 weeks and can include nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), Non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), or fusion inhibitors. All of these drugs can have severe side effects. PEP may be discontinued if the source of blood tests HIV-negative. Follow-up of all exposed individuals includes counseling and HIV testing for at least six months after exposure. Such tests are done at baseline, 6 weeks, 12 weeks, and 6 months and longer in specific circumstances, such as co-infection with HCV.
The course of treatment of fire breather's pneumonia remains controversial. Administration of bronchodilators, corticosteroids, and prophylactic antibiotics to prevent secondary infection, is a common course of treatment. Some studies suggest that steroids may improve outcomes in severely affected individuals, yet these data are only based on a limited number of patients. The use of gastric decontamination to prevent subsequent pulmonary injury from hydrocarbon ingestion is controversial. It may have potential benefit in large (> 30 cc), intentional ingestion of compounds with systemic toxicity.
Prognosis after peak symptoms is typically good, with most patients making a full recovery in weeks to months.
This disease is irreversible and severe cases often require a lung transplant. Transplant recipients are at risk for re-developing the disease, as bronchiolitis obliterans is a common complication of chronic rejection. Evaluation of interventions to prevent bronchiolitis obliterans relies on early detection of abnormal spirometry results or unusual decreases in repeated measurements.
A multi-center study has shown the combination of inhaled fluticasone propionate, oral montelukast, and oral azithromycin may be able to stabilize the disease and slow disease progression. This has only been studied in patients who previously underwent hematopoietic stem cell transplantation.
It is expected that there will be no new cases of progressive inflammatory neuropathy since the process of aerosolizing the pig brains has been discontinued at all pork processing facilities.
The best way to prevent silicosis is to identify work-place activities that produce respirable crystalline silica dust and then to eliminate or control the dust ("primary prevention"). Water spray is often used where dust emanates. Dust can also be controlled through dry air filtering.
Following observations on industry workers in Lucknow (India), experiments on rats found that jaggery (a traditional sugar) had a preventive action against silicosis.
There is no standardized treatment for indium lung disease. Treatment options include pulmonary lavage and corticosteroid therapy. Prognostic factors were a matter of research as of 2012, but preliminary evidence suggests that duration of employment and reported use of respiratory protection are not prognostic factors, but the serum level of indium may be a prognostic factor - higher levels of serum indium have been associated with worse prognoses. Indium lung disease has been fatal in several cases.
Lung cancer may be related to indium lung disease, though indium is not a known carcinogen.
Some medications that can be used for erethism are Traid and Ritalin. Methylphenidate (Ritalin) is a stimulant drug approved for therapy of attention-deficit hyperactivity disorder, postural orthostatic tachycardia syndrome and narcolepsy. It may also be prescribed for off-label use in treatment-resistant cases of lethargy, depression (mood), or neural insult.
One treatment of mercury poisoning was to admit fresh air to the patient by having him go outside daily as much as possible. Stimulants such as ammonia have also been documented to help restore pulse to a normal rhythm. For a more comprehensive reading of treatment, see Mercury poisoning, 'Treatment' section.
In October 2007 an astute medical interpreter noticed similar neurological symptoms being reported by Spanish-speaking patients seeking treatment from different physicians at the Austin Medical Center, in Austin, Minnesota. Not only did these patients share similar neurological symptoms, they also worked at the same pork processing plant. Dr. Daniel LaChance, a physician at both the Austin Medical Center and the Mayo Clinic in nearby Rochester, Minnesota, was notified. He launched a request to area physicians to refer other patients with similar symptoms to him. The Minnesota Department of Health (MDH) was notified and began an investigation into the "outbreak." The MDH identified workers from two other pork processing plants in Indiana and Nebraska who also had parallel neurological complaints. Several agencies including the Occupational Safety and Health Administration (OSHA) and the Center for Disease Control and Prevention (CDC) were brought in to assist. Simultaneously investigations were conducted to rule out contagious disease, to locate the source or carrier, and to identify what exactly was causing these workers to develop these symptoms.
Removal from exposure was the first line of treatment. Due to progressive sensory loss and weakness, immunotherapy was often required. These treatments included intravenous methylprednisolone, oral prednisone, azathioprine, and/or immunoglobulin. All 24 patients improved, including 7 who received no treatment and 17 who required immunotherapy.
Accidental poisonings can be avoided by proper labeling and storage of containers. When handling or applying pesticides, exposure can be significantly reduced by protecting certain parts of the body where the skin shows increased absorption, such as the scrotal region, underarms, face, scalp, and hands. Safety protocols to reduce exposure include the use of personal protective equipment, washing hands and exposed skin during as well as after work, changing clothes between work shifts, and having first aid trainings and protocols in place for workers.
Personal protective equipment for preventing pesticide exposure includes the use of a respirator, goggles, and protective clothing, which have all have been shown to reduce risk of developing pesticide-induced diseases when handling pesticides. A study found the risk of acute pesticide poisoning was reduced by 55% in farmers who adopted extra personal protective measures and were educated about both protective equiment and pesticide exposure risk. Exposure can be significantly reduced when handling or applying pesticides by protecting certain parts of the body where the skin shows increased absorption, such as the scrotal region, underarms, face, scalp, and hands. Using chemical-resistant gloves has been shown to reduce contamination by 33–86%.
The National Institute of Occupational Safety and Health, Japan (JNIOSH) set limits for acceptable exposure at 0.0003 mg/m after the discovery of indium lung. Methods for reducing indium exposure are thought to be the best mode of protection. Medical surveillance of indium workers is also a method of prevention.