Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Congenital nystagmus has traditionally been viewed as non-treatable, but medications have been discovered in recent years that show promise in some patients. In 1980, researchers discovered that a drug called baclofen could effectively stop periodic alternating nystagmus. Subsequently, gabapentin, an anticonvulsant, was found to cause improvement in about half the patients who received it to relieve symptoms of nystagmus. Other drugs found to be effective against nystagmus in some patients include memantine, levetiracetam, 3,4-diaminopyridine (available in the US to eligible patients with downbeat nystagmus at no cost under an expanded access program), 4-aminopyridine, and acetazolamide. Several therapeutic approaches, such as contact lenses, drugs, surgery, and low vision rehabilitation have also been proposed. For example, it has been proposed that mini-telescopic eyeglasses suppress nystagmus.
Surgical treatment of Congenital Nystagmus is aimed at improving the abnormal head posture, simulating artificial divergence or weakening the horizontal recti muscles. Clinical trials of a surgery to treat nystagmus (known as tenotomy) concluded in 2001. Tenotomy is now being performed regularly at numerous centres around the world. The surgery developed by Louis F. Dell'Osso Ph.D. aims to reduce the eye shaking (oscillations), which in turn tends to improve visual acuity.
Acupuncture has conflicting evidence as to having beneficial effects on the symptoms of nystagmus. Benefits have been seen in treatments where acupuncture points of the neck were used, specifically points on the sternocleidomastoid muscle. Benefits of acupuncture for treatment of nystagmus include a reduction in frequency and decreased slow phase velocities which led to an increase in foveation duration periods both during and after treatment. By the standards of evidence-based medicine, the quality of these studies can be considered poor (for example, Ishikawa has a study sample size of just six, is unblinded and without proper control), and given high quality studies showing that acupuncture has no effect beyond placebo, the results of these studies have to be considered clinically irrelevant until higher quality studies are produced.
Physical therapy or Occupational therapy is also used to treat nystagmus. Treatment consist of learning compensatory strategies to take over for the impaired system.
Sedative drugs are often prescribed for vertigo and dizziness, but these usually treat the symptoms rather than the underlying cause. Lorazepam (Ativan) is often used and is a sedative which has no effect on the disease process, but rather helps patients cope with the sensation.
Anti-nauseants, like those prescribed for motion sickness, are also often prescribed but do not affect the prognosis of the disorder.
Specifically for Meniere's disease a medication called Serc (Beta-histine) is available. There is some evidence to support its effectiveness in reducing the frequency of attacks. Also Diuretics, like Diazide (HCTZ/triamterene), are effective in many patients. Finally, ototoxic medications delivered either systemically or through the eardrum can eliminate the vertigo associated with Meniere's in many cases, although there is about a 10% risk of further hearing loss when using ototoxic medications.
Treatment is specific for underlying disorder of balance disorder:
- anticholinergics
- antihistamines
- benzodiazepines
- calcium channel antagonists, specifically Verapamil and Nimodipine
- GABA modulators, specifically gabapentin and baclofen
- Neurotransmitter reuptake inhibitors such as SSRIs, SNRIs and Tricyclics
It is essential that a child with strabismus is presented to the ophthalmologist as early as possible for diagnosis and treatment in order to allow best possible monocular and binocular vision to develop. Initially, the patient will have a full eye examination to identify any associated pathology, and any glasses required to optimise acuity will be prescribed – although infantile esotropia is not typically associated with refractive error. Studies have found that approximately 15% of infantile esotropia patients have accommodative esotropia. For these patients, antiaccommodative therapy (with spectacles) is indicated before any surgery as antiaccommodative therapy fully corrects their esotropia in many cases and significantly decreases their deviation angle in others.
Amblyopia will be treated via occlusion treatment (using patching or atropine drops) of the non-squinting eye with the aim of achieving full alternation of fixation. Management thereafter will be surgical. As alternative to surgery, also botulinum toxin therapy has been used in children with infantile esotropia. Furthermore, as accompaniment to ophtalmologic treatment, craniosacral therapy may be performed in order to relieve tension ("see also:" Management of strabismus).
According to a Cochrane review of 2012, controversies remain regarding type of surgery, non-surgical intervention and age of intervention.
The aims of treatment are as follows:
The elimination of any amblyopia
A cosmetically acceptable ocular alignment
long term stability of eye position
binocular cooperation.
Dysequilibrium arising from bilateral loss of vestibular function – such as can occur from ototoxic drugs such as gentamicin – can also be treated with balance retraining exercises (vestibular rehabilitation) although the improvement is not likely to be full recovery.
Medical treatment with anti-vertigo medications may be considered in acute, severe exacerbation of BPPV, but in most cases are not indicated. These primarily include drugs of the anti-histamine and anti-cholinergic class, such as meclizine and hyoscine butylbromide (scopolamine) respectively. The medical management of vestibular syndromes has become increasingly popular over the last decade, and numerous novel drug therapies (including existing drugs with new indications) have emerged for the treatment of vertigo/dizziness syndromes. These drugs vary considerably in their mechanisms of action, with many of them being receptor- or ion channel-specific. Among them are betahistine or dexamethasone/gentamicin for the treatment of Ménière's disease, carbamazepine/oxcarbazepine for the treatment of paroxysmal dysarthria and ataxia in multiple sclerosis, metoprolol/topiramate or valproic acid/tricyclic antidepressant for the treatment of vestibular migraine, and 4-aminopyridine for the treatment of episodic ataxia type 2 and both downbeat and upbeat nystagmus. These drug therapies offer symptomatic treatment, and do not affect the disease process or resolution rate. Medications may be used to suppress symptoms during the positioning maneuvers if the patient's symptoms are severe and intolerable. More dose-specific studies are required, however, in order to determine the most effective drug(s) for both acute symptom relief and long-term remission of the condition.
A number of maneuvers have been found to be effective including: the Epley maneuver, the Semont maneuver, and to a lesser degree Brandt–Daroff exercises. Both the Epley and the Semont maneuver are equally effective.
Unfortunately, there is no real way to prevent against vertiginous episodes out of the means of managing the disease. As head trauma is a major cause for vertiginous epilepsy, protecting the head from injury is an easy way to avoid possible onset of these seizures. With recent advances in science it is also possible for an individual to receive genetic screening, but this only tells if the subject is predisposed to developing the condition and will not aid in preventing the disease.
There is a range of ways to manage vertiginous epilepsy depending on the severity of the seizures. For simple partial seizures medical treatment is not always necessary. To the comfort of the patient, someone ailed with this disease may be able to lead a relatively normal life with vertiginous seizures. If, however, the seizures become too much to handle, antiepileptic medication can be administered as the first line of treatment. There are several different types of medication on the market to deter epileptic episodes but there is no support to show that one medication is more effective than another. In fact, research has shown that simple partial seizures do not usually respond well to medication, leaving the patient to self-manage their symptoms. A third option for treatment, used only in extreme cases when seizure symptoms disrupt daily life, is surgery wherein the surgeon will remove the epileptic region.
No known treatment for BPT currently exists. However, the condition it is self-limiting and resolves after about eighteen months.
There is generally no treatment to cure achromatopsia. However, dark red or plum colored filters are very helpful in controlling light sensitivity.
Since 2003, there is a cybernetic device called eyeborg that allows people to perceive color through sound waves. Achromatopsic artist Neil Harbisson was the first to use such a device in early 2004, the eyeborg allowed him to start painting in color by memorizing the sound of each color.
Moreover, there is some research on gene therapy for animals with achromatopsia, with positive results on mice and young dogs, but less effectiveness on older dogs. However, no experiments have been made on humans. There are many challenges to conducting gene therapy on humans. See Gene therapy for color blindness for more details about it.
Definitive treatment depends on the underlying cause of vertigo. Ménière's disease patients have a variety of treatment options to consider when receiving treatment for vertigo and tinnitus including: a low-salt diet and intratympanic injections of the antibiotic gentamicin or surgical measures such as a shunt or ablation of the labyrinth in refractory cases.
Common drug treatment options for vertigo may include the following:
- Anticholinergics such as hyoscine hydrobromide (scopolamine)
- Anticonvulsants such as topiramate or valproic acid for vestibular migraines
- Antihistamines such as betahistine, dimenhydrinate, or meclizine, which may have antiemetic properties
- Beta blockers such as metoprolol for vestibular migraine
- Corticosteroids such as methylprednisolone for inflammatory conditions such as vestibular neuritis or dexamethasone as a second-line agent for Ménière's disease
All cases of decompression sickness should be treated initially with 100% oxygen until hyperbaric oxygen therapy (100% oxygen delivered in a high-pressure chamber) can be provided. Several treatments may be necessary, and treatment will generally be repeated until either all symptoms resolve, or no further improvement is apparent.
The cause for pathological nystagmus may be congenital, idiopathic, or secondary to a pre-existing neurological disorder. It also may be induced temporarily by disorientation (such as on roller coaster rides) or by certain drugs (alcohol and other central nervous system depressants, inhalant drugs, stimulants, psychedelic drugs, and dissociative drugs).
The treatment for vestibular neuronitis depends on the cause. However, symptoms of vertigo can be treated in the same way as other vestibular dysfunctions with vestibular rehabilitation.
Vestibular neuronitis is generally a self-limiting disease. Treatment with drugs is neither necessary nor possible. The effect of glucocorticoids has been studied, but they have not been found to significantly affect long-term outcome.
Symptomatic treatment with antihistaminics such as cinnarizine, however, can be used to suppress the symptoms of vestibular neuronitis while it spontaneously regresses. Prochlorperazine is another commonly prescribed medication to help alleviate the symptoms of vertigo and nausea.
Studies have shown that older adults with dementia who take antipsychotics (medications for mental illness) such as prochlorperazine have an increased chance of death during treatment.
Medication is often not necessary in children as symptoms usually alleviate spontaneously as the child ages. However, because the disorder may affect wakeful behavior, many adults who continue to suffer from RMD may seek treatment. Benzodiazepines or tricyclic antidepressants have been considered as therapeutic options in managing the disorder. Infantile and adolescent RMD respond well to low doses of clonazepam. Prescription medications such as ropinirole or pramipexole given to restless legs syndrome patients do not show any clinical improvement in many patients with RMD.
There is no known definitive cure for OMS. However, several drugs have proven to be effective in its treatment.
Some of medication used to treat the symptoms are:
- ACTH has shown improvements in symptoms but can result in an incomplete recovery with residual deficits.
- Corticosteroids (such as "prednisone" or "methylprednisolone") used at high dosages (500 mg - 2 g per day intravenously for a course of 3 to 5 days) can accelerate regression of symptoms. Subsequent very gradual tapering with pills generally follows. Most patients require high doses for months to years before tapering.
- Intravenous Immunoglobulins (IVIg) are often used with varying results.
- Several other immunosuppressive drugs, such as cyclophosphamide and azathioprine, may be helpful in some cases.
- Chemotherapy for neuroblastoma may be effective, although data is contradictory and unconvincing at this point in time.
- Rituximab has been used with encouraging results.
- Other medications are used to treat symptoms without influencing the nature of the disease (symptomatic treatment):
- Trazodone can be useful against irritability and sleep problems
- Additional treatment options include plasmapheresis for severe, steroid-unresponsive relapses.
The National Organization for Rare Disorders (NORD) recommends FLAIR therapy consisting of a three-agent protocol involving front-loaded high-dose ACTH, IVIg, and rituximab that was developed by the National Pediatric Myoclonus Center, and has the best-documented outcomes. Almost all patients (80-90%) show improvement with this treatment and the relapse rate appears to be about 20%.
A more detailed summary of current treatment options can be found at Treatment Options
The following medications should probably be avoided:
- Midazolam - Can cause irritability.
- Melatonin - Is known to stimulate the immune system.
- Also, see for more details
Surgical release involves the two heads of the sternocleidomastoid muscle being dissected free. This surgery can be minimally invasive and done laparoscopically. Usually surgery is performed on those who are over 12 months old. The surgery is for those who do not respond to physical therapy or botulinum toxin injection or have a very fibrotic sternocleidomastoid muscle. After surgery the child will be required to wear a soft neck collar (also called as Callot's cast). There will be an intense physiotherapy program for 3–4 months as well as strengthening exercises for the neck muscles.
Other treatments include:
- Rest and analgesics for acute cases
- Diazepam or other muscle relaxants
- Botulinum toxin
- Encouraging active movements for children 6–8 months of age
- Ultrasound diathermy
Initially, the condition is treated with physical therapies, such as stretching to release tightness, strengthening exercises to improve muscular balance, and handling to stimulate symmetry. A TOT collar is sometimes applied. Early initiation of treatment is very important for full recovery and to decrease chance of relapse.
Treatment of sleep apnea via a continuous positive airway pressure (CPAP) device has shown dramatic improvement in apnea and nearly complete resolution of RMD symptoms. Behavioral interventions may alleviate some RMD symptoms and movements. In such a therapy, sufferers are asked to perform RMD-like motions during the day in a slow and methodic manner. In such, patients come short of full rhythmic movements that they experience in sleep. Such behavioral training has been shown to carry over into sleep, and the forcefulness of the RMD movements is reduced or eliminated. Hypnosis and sleep restriction have been used in some cases to good effect.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
Treatment for this condition entails surveillance of growth and contractures. Furthermore the following are treatment options:
- Thyroid hormone replacement
- Speech therapy
- Hearing aids
Benign paroxysmal torticollis disappears in the early years of life with no medical intervention.
However, some cases of benign paroxysmal torticollis cases can evolve into benign paroxysmal vertigo of childhood, migrainous vertigo or typical migraines.
Depending on subtype, many patients find that acetazolamide therapy is useful in preventing attacks. In some cases, persistent attacks result in tendon shortening, for which surgery is required.
Amaurotic nystagmus is defined as the nystagmus associated with blindness or the central vision defects. It is characterized by the pendular or jerky movements of the eyes in the patients who have visual impairement for a long period of time.