Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although no specific treatment exists, the disease can be managed with anticonvulsants, physiotherapy, etc.
Limbic encephalitis is a rare condition with no randomised-controlled trials to guide treatment. Treatments that have been tried include intravenous immunoglobulin, plasmapheresis, corticosteroids, cyclophosphamide and rituximab.
If an associated tumour is found, then recovery is not possible until the tumour is removed. Unfortunately, this is not always possible, especially if the tumour is malignant and advanced.
During the acute stage, treatment is aimed at reducing the inflammation. As in other inflammatory diseases, steroids may be used first of all, either as a short course of high-dose treatment, or in a lower dose for long-term treatment. Intravenous immunoglobulin is also effective both in the short term and in the long term, particularly in adults where it has been proposed as first-line treatment. Other similar treatments include plasmapheresis and tacrolimus, though there is less evidence for these. None of these treatments can prevent permanent disability from developing.
During the residual stage of the illness when there is no longer active inflammation, treatment is aimed at improving the remaining symptoms. Standard anti-epileptic drugs are usually ineffective in controlling seizures, and it may be necessary to surgically remove or disconnect the affected cerebral hemisphere, in an operation called hemispherectomy. This usually results in further weakness, hemianopsia and cognitive problems, but the other side of the brain may be able to take over some of the function, particularly in young children. The operation may not be advisable if the left hemisphere is affected, since this hemisphere contains most of the parts of the brain that control language. However, hemispherectomy is often very effective in reducing seizures.
Modern treatment approaches to encephalitis lethargica include immunomodulating therapies, and treatments to remediate specific symptoms.
Treatment for encephalitis lethargica in the early stages is patient stabilization, which may be very difficult. There is little evidence so far of a consistent effective treatment for the initial stages, though some patients given steroids have seen improvement.The disease becomes progressive, with evidence of brain damage similar to Parkinson's disease.
Treatment is then symptomatic. Levodopa (-DOPA) and other anti-parkinson drugs often produce dramatic responses; however, most patients given -DOPA experience s of the disease that are short lived.
No controlled clinical trials have been conducted on ADEM treatment, but aggressive treatment aimed at rapidly reducing inflammation of the CNS is standard. The widely accepted first-line treatment is high doses of intravenous corticosteroids, such as methylprednisolone or dexamethasone, followed by 3–6 weeks of gradually lower oral doses of prednisolone. Patients treated with methylprednisolone have shown better outcomes than those treated with dexamethasone. Oral tapers of less than three weeks duration show a higher chance of relapsing, and tend to show poorer outcomes. Other anti-inflammatory and immunosuppressive therapies have been reported to show beneficial effect, such as plasmapheresis, high doses of intravenous immunoglobulin (IVIg), mitoxantrone and cyclophosphamide. These are considered alternative therapies, used when corticosteroids cannot be used or fail to show an effect.
There is some evidence to suggest that patients may respond to a combination of methylprednisolone and immunoglobulins if they fail to respond to either separately
In a study of 16 children with ADEM, 10 recovered completely after high-dose methylprednisolone, one severe case that failed to respond to steroids recovered completely after IV Ig; the five most severe cases -with ADAM and severe peripheral neuropathy- were treated with combined high-dose methylprednisolone and immunoglobulin, two remained paraplegic, one had motor and cognitive handicaps, and two recovered. A recent review of IVIg treatment of ADEM (of which the previous study formed the bulk of the cases) found that 70% of children showed complete recovery after treatment with IVIg, or IVIg plus corticosteroids. A study of IVIg treatment in adults with ADEM showed that IVIg seems more effective in treating sensory and motor disturbances, while steroids seem more effective in treating impairments of cognition, consciousness and rigor. This same study found one subject, a 71-year-old man who had not responded to steroids, that responded to an IVIg treatment 58 days after disease onset.
Treatment (which is based on supportive care) is as follows:
Pyrimethamine-based maintenance therapy is often used to treat Toxoplasmic Encephalitis (TE), which is caused by Toxoplasma gondii and can be life-threatening for people with weak immune systems. The use of highly active antiretroviral therapy (HAART), in conjunction with the established pyrimethamine-based maintenance therapy, decreases the chance of relapse in patients with HIV and TE from approximately 18% to 11%. This is a significant difference as relapse may impact the severity and prognosis of disease and result in an increase in healthcare expenditure.
If people are found to have a tumor, the long-term prognosis is generally better and the chance of relapse is much lower. This is because the tumour can be removed surgically, thus eradicating the source of autoantibodies. In general, early diagnosis and aggressive treatment is believed to improve patient outcomes, but this remains impossible to know without data from randomized controlled trials. Given that the majority of patients are initially seen by psychiatrists, it is critical that all physicians (especially psychiatrists) consider anti-NMDA receptor encephalitis as a possible cause of acute psychosis in young patients with no past neuropsychiatric history.
- If a tumor is detected, its removal should occur in conjunction with first-line immunotherapy. This involves steroids to suppress the immune system, intravenous immunoglobulin, and plasmapheresis to physically remove autoantibodies. A study of 577 patients showed that over four weeks, about half the patients improved after receiving first-line immunotherapy.
- Second-line immunotherapy includes rituximab, a monoclonal antibody that targets the CD20 receptor on the surface of B cells, thus destroying the self-reactive B cells. Cyclophosphamide, an alkylating agent that cross-links DNA and is used to treat both cancer and autoimmune diseases, has sometimes proven useful when other therapies have failed.
- Other medications, such as alemtuzumab, remain experimental.
Most patients reported in the literature have been given treatments suitable for autoimmune neurological diseases, such as corticosteroids, plasmapheresis and/or intravenous immunoglobulin, and most have made a good recovery. The condition is too rare for controlled trials to have been undertaken.
The disease is incurable once manifested, so there is no specific drug therapy for TBE. Symptomatic brain damage requires hospitalization and supportive care based on syndrome severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances for symptomatic relief. Tracheal intubation and respiratory support may be necessary.
Prevention includes non-specific (tick-bite prevention, tick checks) and specific prophylaxis in the form of a vaccine. TBE immunoglobulin is no longer used. Tick-borne encephalitis vaccine is very effective and available in many disease endemic areas and in travel clinics.
No specific therapy is available at present for La Crosse encephalitis, and management is limited to alleviating the symptoms and balancing fluids and electrolyte levels. Intravenous ribavirin is effective against La Crosse encephalitis virus in the laboratory, and several studies in patients with severe, brain biopsy confirmed, La Crosse encephalitis are ongoing.
In a trial with 15 children being infected with La Crosse viral encephalitis were treated at certain phases with ribavirin (RBV). RBV appeared to be safe at moderate doses. At escalated doses of RBV, adverse events occurred and then the trial was discontinued. Nonetheless, this was the largest study of antiviral treatment for La Crosse encephalitis.
The recovery process from anti-NMDA encephalitis can take many months. The symptoms reappear in reverse order: The patient may begin to experience psychosis again, leading many people to falsely believe the patient is not recovering. As the recovery process continues on, the psychosis fades. Lastly, the person's social behavior and executive functions begin to improve.
Vaccination is available against tick-borne and Japanese encephalitis and should be considered for at-risk individuals. Post-infectious encephalomyelitis complicating smallpox vaccination is avoidable, for all intents and purposes, as smallpox is nearly eradicated. Contraindication to Pertussis immunization should be observed in patients with encephalitis.
Antiviral therapy: as early as possible
10~15mg/kg every 8 hours for 14~21d
5~10mg/kg every 12hours for 14~21d
immune therapy: interferon
symptomatic therapy
High fever: physical regulation of body temperature
Seizure: antiepileptic drugs
high intracranial pressure-20%mannitol
Infections: antibiotic drugs
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
The treatment of TORCH syndrome is mainly supportive and depends on the symptoms present; medication is an option for herpes and cytomegalovirus infections.
There is no specific treatment for rubella; however, management is a matter of responding to symptoms to diminish discomfort. Treatment of newborn babies is focused on management of the complications. Congenital heart defects and cataracts can be corrected by direct surgery.
Management for ocular congenital rubella syndrome (CRS) is similar to that for age-related macular degeneration, including counseling, regular monitoring, and the provision of low vision devices, if required.
Herpesviral Encephalitis can be treated with high-dose intravenous acyclovir. Without treatment, HSE results in rapid death in approximately 70% of cases; survivors suffer severe neurological damage. When treated, HSE is still fatal in one-third of cases, and causes serious long-term neurological damage in over half of survivors. Twenty percent of treated patients recover with minor damage. Only a small population of survivors (2.5%) regain completely normal brain function. Indeed, many amnesic cases in the scientific literature have etiologies involving HSE. Earlier treatment (within 48 hours of symptom onset) improves the chances of a good recovery. Rarely, treated individuals can have relapse of infection weeks to months later. There is evidence that aberrant inflammation triggered by herpes simplex can result in granulomatous inflammation in the brain, which responds to steroids. While the herpes virus can be spread, encephalitis itself is not infectious. Other viruses can cause similar symptoms of encephalitis, though usually milder (Herpesvirus 6, varicella zoster virus, Epstein-Barr, cytomegalovirus, coxsackievirus, etc.).
There is no specific treatment for Japanese encephalitis and treatment is supportive, with assistance given for feeding, breathing or seizure control as required. Raised intracranial pressure may be managed with mannitol. There is no transmission from person to person and therefore patients do not need to be isolated.
A breakthrough in the field of Japanese encephalitis therapeutics is the identification of macrophage receptor involvement in the disease severity. A recent report of an Indian group demonstrates the involvement of monocyte and macrophage receptor CLEC5A in severe inflammatory response in Japanese Encephalitis infection of the brain. This transcriptomic study provides a hypothesis of neuroinflammation and a new lead in development of appropriate therapeutic against Japanese encephalitis.
PRP is very rare and similar to SSPE but without intracellular inclusion bodies.
Only 20 patients have been identified since first recognized in 1974.
TORCH syndrome can be prevented by treating an infected pregnant person, thereby preventing the infection from affecting the fetus.
At the moment there are no therapies specifically targeting the underlying cause of AGS. Current treatments address the symptoms, which can be varied both in scope and severity. Many patients benefit from tube-feeding. Drugs can be administered to help with seizures / epilepsy. The treatment of chilblains remains problematic, but particularly involves keeping the feet / hands warm. Physical therapy, including the use of splints can help to prevent contractures and surgery is sometimes required. Botox (botulinium toxin) has sometimes caused severe immune reactions in some AGS patients, and the high risk of possible further brain damage must be considered before giving Botox. Occupational therapy can help with development, and the use of technology (e.g. Assistive Communication Devices) can facilitate communication. Patients should be regularly screened for treatable conditions, most particularly glaucoma and endocrine problems (especially hypothyroidism). The risk versus benefit of giving immunizations also must be considered, as some AGS patients have high immune responses or flares that cause further brain damage from immunizations but other patients have no problems with immunizations; on the other hand, AGS patients have died from illnesses that can be immunized against, so the family must consider the risk vs. benefit of each immunization vs. risk of the actual virus if they choose not to immunize. As of 2017, there are current drug trials being conducted that may lead to drug treatments for AGS.
Infection in otherwise healthy adults tends to be more severe. Treatment with antiviral drugs (e.g. acyclovir or valacyclovir) is generally advised, as long as it is started within 24–48 hours from rash onset. Remedies to ease the symptoms of chickenpox in adults are basically the same as those used for children. Adults are more often prescribed antiviral medication, as it is effective in reducing the severity of the condition and the likelihood of developing complications. Antiviral medicines do not kill the virus but stop it from multiplying. Adults are advised to increase water intake to reduce dehydration and to relieve headaches. Painkillers such as paracetamol (acetaminophen) are recommended, as they are effective in relieving itching and other symptoms such as fever or pains. Antihistamines relieve itching and may be used in cases where the itching prevents sleep, because they also act as a sedative. As with children, antiviral medication is considered more useful for those adults who are more prone to develop complications. These include pregnant women or people who have a weakened immune system.
Sorivudine, a nucleoside analogue, has been reported to be effective in the treatment of primary varicella in healthy adults (case reports only), but large-scale clinical trials are still needed to demonstrate its efficacy.
After recovering from chickenpox, it is recommended by doctors that adults take one injection of VZV immune globulin and one injection of varicella vaccine or herpes zoster vaccine.
A complete recovery following immunotherapy and tumor removal. Untreated cases died within few months of onset. Some patients have a poor outcome despite sustained immunosuppression, but that is often related to tumor progression or associated with the presence of Abs directed against intracellular Ags such as GAD Abs or amphyphysin Abs, which can reflect the involvement of an additional cytotoxic T-cell mechanism in the progression of the disease.
Oropouche Fever has no cure or specific therapy so treatment is done by relieving the pain of the symptoms through symptomatic treatment. Certain oral analgesic and anti-inflammatory agents can help treat headaches and body pains. In extreme cases of oropouche fever the drug, Ribavirin is recommended to help against the virus. This is called antiviral therapy. Treatments also consist of drinking lots of fluids to prevent dehydration.
Asprin is not a recommended choice of drug because it can reduce blood clotting and may aggravate the hemorrhagic effects and prolong recovery time.
The infection is usually self-limiting and complications are rare. This illness usually lasts for about a week but in extreme cases can be prolonged. Patients usually recover fully with no long term ill effects. There have been no recorded fatalities resulting from oropouche fever.
If aciclovir by mouth is started within 24 hours of rash onset, it decreases symptoms by one day but has no effect on complication rates. Use of acyclovir therefore is not currently recommended for individuals with normal immune function. Children younger than 12 years old and older than one month are not meant to receive antiviral drugs unless they have another medical condition which puts them at risk of developing complications.
Treatment of chickenpox in children is aimed at symptoms while the immune system deals with the virus. With children younger than 12 years, cutting nails and keeping them clean is an important part of treatment as they are more likely to scratch their blisters more deeply than adults.
Aspirin is highly contraindicated in children younger than 16 years, as it has been related to Reye syndrome.