Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatments of NTDs depends on the severity of the complication. No treatment is available for anencephaly and infants usually do not survive more than a few hours. Aggressive surgical management has improved survival and the functions of infants with spina bifida, meningoceles and mild myelomeningoceles. The success of surgery often depends on the amount of brain tissue involved in the encephalocele. The goal of treatment for NTDs is to allow the individual to achieve the highest level of function and independence. Fetal surgery in utero before 26 weeks gestation has been performed with some hope that there is benefit to the final outcome including a reduction in Arnold–Chiari malformation and thereby decreases the need for a ventriculoperitoneal shunt but the procedure is very high risk for both mother and baby and is considered extremely invasive with questions that the positive outcomes may be due to ascertainment bias and not true benefit. Further, this surgery is not a cure for all problems associated with a neural tube defect. Other areas of research include tissue engineering and stem cell therapy but this research has not been used in humans.
Currently, the only effective treatment for encephaloceles is reparative surgery, generally performed during infancy. The extent to which it can be corrected depends on the location and size of the encephaloceles; however, large protrusions can be removed without causing major disability. Surgery repositions the bulging area back into the skull, removes the protrusions, and corrects the deformities, typically relieving pressure that can delay normal brain development. Occasionally, shunts are placed to drain excess cerebrospinal fluid from the brain.
The goals of treatment include:
- closure of open skin defects to prevent infection and desiccation of brain tissue
- removal of nonfunctional extracranial cerebral tissue with water-tight closure of the dura
- total craniofacial reconstruction with particular emphasis on avoiding the long-nose deformity (nasal elongation that results from depression of the cribiform plate and nasal placode). Without proper management, the long-nose deformity can be more obvious after repair.
Standard treatment is after delivery. There is tentative evidence about treatment for severe disease before delivery while the baby is inside the womb. As of 2014 the evidence; however, remains insufficient to determine benefits and harms.
Treatment of spina bifida during pregnancy is not without risk. To the mother, this includes scarring of the uterus. To the baby, there is the risk of preterm birth.
Broadly, there are two forms of prenatal treatment. The first is open fetal surgery, where the uterus is opened and the spina bifida repair performed. The second is via fetoscopy. These techniques may be an option to standard therapy.
It is recommended that women who may become pregnant take 400 micrograms of folic acid daily.
The general purpose of the following treatment methods is to divert the flow of CSF from the blocked aqueduct, which is causing the buildup of CSF, and allow the flow to continue. Another goal of these treatments is to reduce the stress within the ventricles. Studies have not shown that either of the following treatments results in a higher IQ of the patient, and there is not statistical difference in a patient's quality of life based on treatment method. The following treatment methods are not used for aqueductal stenosis caused by tumor compression; if the obstruction is a direct result of tumor compression, CSF flow may be normalized by the surgical removal of the tumor.
Pregnant mothers are advised to take folic acid supplements to reduce risk of iniencephaly by up to 70%. Pregnant mothers are also advised not to take antiepileptic drugs, diuretics, antihistamines, and sulfa drugs, all of which have been associated with increased risk for neural tube defects.
In 1996, the United States Food and Drug Administration published regulations requiring the addition of folic acid to enriched breads, cereals, flour and other grain products. It is important to note that during the first four weeks of pregnancy (when most women do not even realize that they are pregnant), adequate folate intake is essential for proper operation of the neurulation process. Therefore, women who could become pregnant are advised to eat foods fortified with folic acid or take supplements in addition to eating folate-rich foods to reduce the risks of serious birth defects.
In Canada, mandatory fortification of selected foods with folic acid has been shown to reduce the incidence of neural tube defects by 46%.
Women who may become pregnant are advised to get 400 micrograms of folic acid daily. Women who have previously given birth to a child with a neural tube defect may benefit from a supplement containing 4.0 mg/5.0 mg in the UK mg daily, following advice provided by their doctor.
Most individuals with myelomeningocele will need periodic evaluations by a variety of specialists:
- Physiatrists coordinate the rehabilitation efforts of different therapists and prescribe specific therapies, adaptive equipment, or medications to encourage as high of a functional performance within the community as possible.
- Orthopedists monitor growth and development of bones, muscles, and joints.
- Neurosurgeons perform surgeries at birth and manage complications associated with tethered cord and hydrocephalus.
- Neurologists treat and evaluate nervous system issues, such as seizure disorders.
- Urologists to address kidney, bladder, and bowel dysfunction – many will need to manage their urinary systems with a program of catheterization. Bowel management programs aimed at improving elimination are also designed.
- Ophthalmologists evaluate and treat complications of the eyes.
- Orthotists design and customize various types of assistive technology, including braces, crutches, walkers, and wheelchairs to aid in mobility. As a general rule, the higher the level of the spina bifida defect, the more severe the paralysis, but paralysis does not always occur. Thus, those with low levels may need only short leg braces, whereas those with higher levels do best with a wheelchair, and some may be able to walk unaided.
- Physical therapists, occupational therapists, psychologists, and speech/language pathologists aid in rehabilitative therapies and increase independent living skills.
An endoscopic third ventriculostomy (ETV) is a procedure where an incision is made in the bottom of the third ventricle to make a drainage point for CSF to flow out of. The procedure is minimally invasive and is performed endoscopically. The goal in the surgery is to create a path for communication between the third ventricle and the subarachnoid space outside the brain for reabsorption of CSF. ETV has a higher failure rate than shunting during the first 3 postoperative months, but after this time the risk of failure progressively drops to become half as high as the failure risk for shunting.
This treatment does not place a foreign body into the patient so there is a much lower risk of infection as compared to a shunt procedure. Along with not implanting a device, this procedure avoids mechanical issues like disconnection, over or underdrainage, and valve dysfunction. The surgery begins by entering the right or left lateral ventricle endoscopically through a burr hole. The third ventricle is identified and entered as well, and an incision is made in the floor of the ventricle and enlarged as necessary with tools such as forceps or Fogarty catheters. If a membrane prevents CSF flow between the ventricle and the subarachnoid space, then an incision is made in the membrane as well. Ideally this procedure can be performed near the midline of the brain with minimal side-to-side motions of the endoscope so as to not tear tissues and cause further complications.
Research has found that this procedure has a 75% success rate, that 72% of ETV surgeries are still correctly functioning after 15 years, and that patients have shorter hospital stays recovering as compared to shunting. If the procedure does not successfully cure the aqueductal stenosis, a second surgery can be performed to enlarge the incision or implant a shunt. Problems that can lead to these failures and require additional surgery include the stoma becoming closed or a new membrane forming across the stoma over time. Currently there is no universal decision about whether this should be performed in children, as infants have a higher tendency to have a membrane form over the incision which means that an additional surgery would have to be performed.
Treatment is with neonatal surgical repair, with the objective of restoring a normal pattern of blood flow. The surgery is open heart, and the patient will be placed on cardiopulmonary bypass to allow the surgeon to work on a still heart. The heart is opened and the ventricular septal defect is closed with a patch. The pulmonary arteries are then detached from the common artery (truncus arteriosus) and connected to the right ventricle using a tube (a conduit or tunnel). The common artery, now separated from the pulmonary circulation, functions as the aorta with the truncal valve operating as the aortic valve. Most babies survive this surgical repair, but may require further surgery as they grow up. For example, the conduit does not grow with the child and may need to be replaced as the child grows. Furthermore, the truncal valve is often abnormal and may require future surgery to improve its function.
There have been cases where the condition has been diagnosed at birth and surgical intervention is an option. A number of these cases have survived well into adulthood.
The goals of treatment in infants with Robin sequence focus upon breathing and feeding, and optimizing growth and nutrition despite the predisposition for breathing difficulties. If there is evidence of airway obstruction (snorty breathing, apnea, difficulty taking a breath, or drops in oxygen), then the infant should be placed in the sidelying or prone position, which helps bring the tongue base forward in many children. One study of 60 infants with PRS found that 63% of infants responded to prone positioning (Smith and Senders, 2006, Int J Pediatr Oto). 53% of the infants in this study required some form of feeding assistance, either nasogastric tube or gastrostomy tube feedings (feeding directly into the stomach). In a separate study of 115 children with the clinical diagnosis of PRS managed at 2 different hospitals in Boston (Evans et al., 2006, In J Pediatr Oto), respiratory distress was managed successfully in 56% without an operation (either by prone positioning, short term intubation, or placement of a nasopharyngeal airway). In this study, gastrostomy tube feeding were placed in 42% of these infants due to feeding difficulties.
Gastroesophageal reflux (GERD) seems to be more prevalent in children with Robin sequence (Dudkiewicz, March 2000, CPCJ). Because reflux of acidic contents in the posterior pharynx and upper airway can intensify the symptoms of Robin sequence, specifically by worsening airway obstruction, it is important to maximize treatment for GER in children with PRS and reflux symptoms. Treatment may include upright positioning on a wedge (a tucker sling may be needed if the baby is in the prone position), small and frequent feedings (to minimize vomiting), and/or pharmacotherapy (such as proton pump inhibitors).
In nasopharyngeal cannulation (or placement of the nasopharyngeal airway or tube), the infant is fitted with a blunt-tipped length of surgical tubing (or an endotracheal tube fitted to the child), which is placed under direct visualization with a laryngoscope, being inserted into the nose and down the pharynx (or throat), ending just above the vocal cords. Surgical threads fitted through holes in the outside end of the tube are attached to the cheek with a special skin-like adhesive material called 'stomahesive', which is also wrapped around the outside end of the tube (but not over the opening at the end) to keep the tube in place. This tube or cannula, which itself acts as an airway, primarily acts as a sort of "splint" which maintains patency of the airway by keeping the tongue form falling back on the posterior pharyngeal wall and occluding the airway, therefore preventing airway obstruction, hypoxia and asphyxia. Nasopharyngeal airways are not available at every center, however, when available, nasopharyngeal cannulation should be favored over the other treatments mentioned in this article, as it is far less invasive; it allows the infant to feed without the further placement of a nasogastric tube. This treatment may be utilized for multiple months, until the jaw has grown enough so that the tongue assumes a more normal position in the mouth and airway (at birth, the jaws of some infants are so underdeveloped that only the tip of the tongue can be seen when viewed in the throat). Some institutions discharge the infant home with a nasopharyngeal tube in place (Citation: KD Anderson, May 2007, CPCJ).
Distraction osteogenesis (DO), also called a "Mandibular Distraction", can be used to correct abnormal smallness of one or both jaws seen in patients with Robin Sequence. Enlargement of the lower jaw brings the tongue forward, preventing it from obstructing the upper airway. The process of DO begins with preoperative assessment. Doctors use three-dimensional imaging to identify the parts of the patient's facial skeleton that need repositioning and determine the magnitude and direction of distraction. They may then select the most appropriate distraction device or sometimes have custom devises fabricated. When possible, intraoral devices are used.
DO surgery starts with an osteotomy (surgical division or sectioning of bone) followed by the distraction device being placed under the skin and across the osteotomy. A few days later, the two ends of the bone are very gradually pulled apart through continual adjustments that are made to the device by the parents at home. The adjustments are made by turning a small screw that protrudes through the skin, usually at a rate of 1 mm per day. This gradual distraction leads to formation of new bone between the two ends. After the process is complete, the osteotomy is allowed to heal over a period of six to eight weeks. A small second surgery is then performed to remove the device.
The cleft palate is generally repaired between the ages of 6½ months and 2 years by a plastic or maxillofacial surgeon. In many centres there is now a cleft lip and palate team comprising both of these specialties, as well as a coordinator, a speech and language therapist, an orthodontist, sometimes a psychologist or other mental health specialist, an audiologist, an otorhinolaryngologist (ENT surgeon) and nursing staff. The glossoptosis and micrognathism generally do not require surgery, as they improve to some extent unaided, though the mandibular arch remains significantly smaller than average. In some cases jaw distraction is needed to aid in breathing and feeding. Lip-tongue attachment is performed in some centres, though its efficacy has been recently questioned.
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
Since newborns with iniencephaly so rarely survive past childbirth, a standard treatment does not exist.
Some evidence suggests that indomethacin administration on the first day of life to all preterm infants reduces the risk of developing a PDA and the complications associated with PDA. Indomethacin treatment in premature infants also may reduce the need for surgical intervention.
Treatment is surgical and involves closure of the atrial and ventricular septal defects and restoration of a competent left AV valve as far as is possible. Open surgical procedures require a heart-lung machine and are done with a median sternotomy. Surgical mortality for uncomplicated ostium primum defects in experienced centers is 2%; for uncomplicated cases of complete atrioventricular canal, 4% or less. Certain complications such as tetralogy of Fallot or highly unbalanced flow across the common AV valve can increase risk significantly.
Infants born with AVSD are generally in sufficient health to not require immediate corrective surgery. If surgery is not required immediately after birth, the newborn will be closely monitored for the next several months, and the operation held-off until the first signs of lung distress or heart failure. This gives the infant time to grow, increasing the size of, and thereby the ease of operation on, the heart, as well as the ease of recovery. Infants will generally require surgery within three to six months, however, they may be able to go up to two years before the operation becomes necessary, depending on the severity of the defect.
Children affected with PRS usually reach full development and size. However, it has been found internationally that children with PRS are often slightly below average size, raising concerns of incomplete development due to chronic hypoxia related to upper airway obstruction as well as lack of nutrition due to early feeding difficulties or the development of an oral aversion. However, the general prognosis is quite good once the initial breathing and feeding difficulties are overcome in infancy. Most PRS babies grow to lead a healthy and normal adult life.
The most important medical problems are difficulties in breathing and feeding. Affected infants very often need assistance with feeding, for example needing to stay in a lateral(on the side) or prone(on the tummy) position which helps bring the tongue forward and opens up the airway. Babies with a cleft palate will need a special cleft feeding device (such as the Haberman Feeder). Infants who are unable to take in enough calories by mouth to ensure growth may need supplementation with a nasogastric tube. This is related to the difficulty in forming a vacuum in the oral cavity related to the cleft palate, as well as to breathing difficulty related to the posterior position of the tongue. Given the breathing difficulties that some babies with PRS face, they may require more calories to grow (as working of breathing is somewhat like exercising for an infant). Infants, when moderately to severely affected, may occasionally need nasopharyngeal cannulation, or placement of a nasopharyngeal tube to bypass the airway obstruction at the base of the tongue. in some places, children are discharged home with a nasopharyngeal tube for a period of time, and parents are taught how to maintain the tube. Sometimes endotracheal intubation or tracheostomy may be indicated to overcome upper respiratory obstruction. In some centers, a tongue lip adhesion is performed to bring the tongue forward, effectively opening up the airway. Mandibular distraction can be effective by moving the jaw forward to overcome the upper airway obstruction caused by the posterior positioning of the tongue.
Given that a proportion of children with Robin sequence will have Stickler syndrome, it is important that a child with PRS have an evaluation by an optometrist or ophthalmologist in the first year of life looking for myopia that can be seen in Stickler syndrome. Because retinal detachment that can occur in Stickler syndrome is a leading cause of blindness in children, it is very important to recognize and be thoughtful of this diagnosis.
To treat Lutembacher's syndrome, the underlying causes of the disorder must first be treated: mitral stenosis and atrial septal defect. Lutembacher's syndrome is usually treated surgically with treatments such as:
- percutaneous transcatheter therapy for MS
- Device closure of ASD
Percutaneous transcatheter treatment for the MS can include transcatheter therapies of such as balloon valuloplasty.
Neonates without adverse symptoms may simply be monitored as outpatients, while symptomatic PDA can be treated with both surgical and non-surgical methods. Surgically, the DA may be closed by ligation (though support in premature infants is mixed), either manually tied shut, or with intravascular coils or plugs that leads to formation of a thrombus in the DA.
Devices developed by Franz Freudenthal block the blood vessel with woven structures of nitinol wire.
Because prostaglandin E2 is responsible for keeping the DA open, NSAIDS (which can inhibit prostaglandin synthesis) such as indomethacin or a special form of ibuprofen have been used to initiate PDA closure. Recent findings from a systematic review concluded that, for closure of a PDA in preterm and/or low birth weight infants, ibuprofen is as effective as Indomethacin. It also causes fewer side effects (such as transient renal insufficiency) and reduces the risk of necrotising enterocolitis. Another recent review showed that paracetamol may be effective for closure of a PDA in preterm infants.
More recently, PDAs can be closed by percutaneous interventional method (avoiding open heart surgery). A platinum coil can be deployed via a catheter through the femoral vein or femoral artery, which induces thrombosis (coil embolization). Alternatively, a PDA occluder device , composed of nitinol mesh, is deployed from the pulmonary artery through the PDA.
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
Treatments for the condition vary depending on its severity. The most immediate and effective treatment in the majority of cases is a surgical repair to close the fistula/s and reconnect the two ends of the esophagus to each other. Although this is usually done through an incision between the ribs on right side of the baby, a technique using three small incisions (thoracoscopy) is being used at some centers. In a minority of cases, the gap between upper and lower esophageal segments may be too long to bridge. In some of these so-called long gap cases, though, an advanced surgical treatment developed by John Foker, MD, may be utilized to elongate and then join together the short esophageal segments. Using the Foker technique, surgeons place traction sutures in the tiny esophageal ends and increase the tension on these sutures daily until the ends are close enough to be sewn together. The result is a normally functioning esophagus, virtually indistinguishable from one congenitally well formed. Unfortunately, the results have been somewhat difficult to replicate by other surgeons and the need for multiple operations has tempered enthusiasm for this approach.
The optimal treatment in cases of long gap esophageal atresia remains controversial. Traditional surgical approaches include gastrostomy followed by gastric pull-up, colonic transposition and jejunum transposition. Gastric pull-up has been the preferred approach at many specialized centers, including Great Ormond Street (London) and Mott Children's Hospital (Ann Arbor). Gastrostomy, or G-tube, allows for tube feedings into the stomach through the abdominal wall. Often a cervical esophagostomy will also be done, to allow the saliva which is swallowed to drain out a hole in the neck. Months or years later, the esophagus may be repaired, sometimes by using a segment of bowel brought up into the chest, interposing between the upper and lower segments of esophagus.
Post operative complications sometimes arise, including a leak at the site of closure of the esophagus. Sometimes a stricture, or tight spot, will develop in the esophagus, making it difficult to swallow. This can usually be dilated using medical instruments. In later life, most children with this disorder will have some trouble with either swallowing or heartburn or both. Esophageal dismotility occurs in 75-100% of patients.
Tracheomalacia—a softening of the trachea, usually above the carina (carina of trachea), but sometimes extensive in the lower bronchial tree as well—is another possible serious complication. Even after esophageal repair (anastomosis) the relative flaccidity of former proximal pouch (blind pouch, above) along with esophageal dysmotility can cause fluid buildup during feeding. Owing to proximity, pouch ballooning can cause tracheal occlusion. Severe hypoxia ("dying spells") follows and medical intervention can often be required.
A variety of treatments for tracheomalacia associated with esophageal atresia are available. If not severe, the condition can be managed expectantly since the trachea will usually stiffen as the infant matures into the first year of life. When only the trachea above the carina is compromised, one of the "simplest" interventions is aortopexy wherein the aortic loop is attached to the rear of the sternum, thereby mechanically relieving pressure from the softened trachea. An even simpler intervention is stenting. However, epithelial cell proliferation and potential incorporation of the stent into the trachea can make subsequent removal dangerous.
Examples of possible complications include shunt malfunction, shunt failure, and shunt infection, along with infection of the shunt tract following surgery (the most common reason for shunt failure is infection of the shunt tract). Although a shunt generally works well, it may stop working if it disconnects, becomes blocked (clogged), infected, or it is outgrown. If this happens the cerebrospinal fluid will begin to accumulate again and a number of physical symptoms will develop (headaches, nausea, vomiting, photophobia/light sensitivity), some extremely serious, like seizures. The shunt failure rate is also relatively high (of the 40,000 surgeries performed annually to treat hydrocephalus, only 30% are a patient's first surgery) and it is not uncommon for patients to have multiple shunt revisions within their lifetime.
Another complication can occur when CSF drains more rapidly than it is produced by the choroid plexus, causing symptoms - listlessness, severe headaches, irritability, light sensitivity, auditory hyperesthesia (sound sensitivity), nausea, vomiting, dizziness, vertigo, migraines, seizures, a change in personality, weakness in the arms or legs, strabismus, and double vision - to appear when the patient is vertical. If the patient lies down, the symptoms usually vanish quickly. A CT scan may or may not show any change in ventricle size, particularly if the patient has a history of slit-like ventricles. Difficulty in diagnosing overdrainage can make treatment of this complication particularly frustrating for patients and their families. Resistance to traditional analgesic pharmacological therapy may also be a sign of shunt overdrainage "or" failure.
The diagnosis of cerebrospinal fluid buildup is complex and requires specialist expertise. Diagnosis of the particular complication usually depends on when the symptoms appear - that is, whether symptoms occur when the patient is upright or in a prone position, with the head at roughly the same level as the feet.
Percutaneous transcatheter therapy is used to repair the mitral valve and sometimes the septum. In percutaneous balloon mitral valvuloplasty, using a catheter, a ballon such as the Inoue ballon is placed into blood vessels in the groin area and the balloon guided to the heart. If a hole is not already present, a small hole may need to be inserted the atria and inserted into the mitral valve through the left atrium; the balloon is then inflated. The balloon inside the mitral valve will be inflated and deflated several times to wide the valve opening until the opening is satisfactory; the balloon will then be deflated and removed.
The advantage to using percutaneous procedures instead of open-heart surgery is not needing general anesthesia, blood transfusions, and the recovery time is quicker. The drawback to this procedure is the lack of repeating and transseptal procedures if they are needed later. Also if the patient later develops a relapse of MS, surgery will need to be performed where using more evasive techniques. Additionally, if a hole is needed to be inserted into the atria to obtain access to the mitral valve, there is a risk of developing ASD secondarily.
A device, known as the Amplatzer muscular VSD occluder, may be used to close certain VSDs. It was initially approved in 2009. It appears to work well and be safe. The cost is also lower than having open heart surgery. The device is placed through a small incision in the groin.
The Amplatzer septal occluder was shown to have full closure of the ventricular defect within the 24 hours of placement. It has a low risk of embolism after implantation. Some tricuspid valve regurgitation was shown after the procedure that could possibly be due from the right ventricular disc. There have been some reports that the Amplatzer septal occluder may cause life-threatening erosion of the tissue inside the heart. This occurs in one percent of people implanted with the device and requires immediate open-heart surgery. This erosion occurs due to improper sizing of the device resulting with it being too large for the defect, causing rubbing of the septal tissue and erosion.
a) Surgical closure of a Perimembranous VSD is performed on cardiopulmonary bypass with ischemic arrest. Patients are usually cooled to 28 degrees. Percutaneous Device closure of these defects is rarely performed in the United States because of the reported incidence of both early and late onset complete heart block after device closure, presumably secondary to device trauma to the AV node.
b) Surgical exposure is achieved through the right atrium. The tricuspid valve septal leaflet is retracted or incised to expose the defect margins.
c) Several patch materials are available, including native pericardium, bovine pericardium, PTFE (Gore-Tex or Impra), or Dacron.
d) Suture techniques include horizontal pledgeted mattress sutures, and running polypropylene suture.
e) Critical attention is necessary to avoid injury to the conduction system located on the left ventricular side of the interventricular septum near the papillary muscle of the conus.
f) Care is taken to avoid injury to the aortic valve with sutures.
g) Once the repair is complete, the heart is extensively deaired by venting blood through the aortic cardioplegia site, and by infusing Carbon Dioxide into the operative field to displace air.
h) Intraoperative transesophageal echocardiography is used to confirm secure closure of the VSD, normal function of the aortic and tricuspid valves, good ventricular function, and the elimination of all air from the left side of the heart.
i) The sternum, fascia and skin are closed, with potential placement of a local anesthetic infusion catheter under the fascia, to enhance postoperative pain control.
j) Multiple muscular VSDs are a challenge to close, achieving a complete closure can be aided by the use of fluorescein dye.