Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotic treatment only has a marginal effect on the duration of symptoms, and its use is not recommended except in high-risk patients with clinical complications.
Erythromycin can be used in children, and tetracycline in adults. Some studies show, however, that erythromycin rapidly eliminates "Campylobacter" from the stool without affecting the duration of illness. Nevertheless, children with dysentery due to "C. jejuni" benefit from early treatment with erythromycin. Treatment with antibiotics, therefore, depends on the severity of symptoms. Quinolones are effective if the organism is sensitive, but high rates of quinolone use in livestock means that quinolones are now largely ineffective.
Antimotility agents, such as loperamide, can lead to prolonged illness or intestinal perforation in any invasive diarrhea, and should be avoided. Trimethoprim/sulfamethoxazole and ampicillin are ineffective against "Campylobacter".
The infection is usually self-limiting, and in most cases, symptomatic treatment by liquid and electrolyte replacement is enough in human infections.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Treatment is supportive and based upon symptoms, with fluid and electrolyte replacement as the primary goal. Dehydration caused by diarrhea and vomiting is the most common complication. To prevent dehydration, it is important to take frequent sips of a rehydration drink (like water) or try to drink a cup of water or rehydration drink for each large, loose stool.
Dietary management of enteritis consists of starting with a clear liquid diet until vomiting and diarrhea end and then slowly introduce the BRATT diet. The BRATT diet consists of bananas, rice, applesauce, tea, and toast. It is also important to avoid foods that are high in fiber or are possibly difficult to digest.
Currently, no therapeutic drugs are prescribed for the disease. Therefore, prevention is the sole mode of treatment. This disease can only be prevented by quarantining sick birds and preventing migration of birds around the house, causing them to spread the disease. Deworming of birds with anthelmintics can reduce exposure to the cecal nematodes that carry the protozoan. Good management of the farm, including immediate quarantine of infected birds and sanitation, is the main useful strategy for controlling the spread of the parasitic contamination. The only drug used for the control (prophylaxis) in the United States is nitarsone at 0.01875% of feed until 5 days before marketing. Natustat and nitarsone were shown to be effective therapeutic drugs. Nifurtimox, a compound with known antiprotozoal activity, was demonstrated to be significantly effective at 300–400 ppm, and well tolerated by turkeys.
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
In order to control for the disease, the "Lymnaea" spp snails, which are the intermediate host for the liver flukes, need to be controlled. There are three ways that have proven most effective when controlling the snail populations:
- The first is by treating pastures and water channels with copper sulfate. This method is not always practical, because it is too expensive to treat in large areas. Lack of cooperation between neighbors is also a problem, snails are easily transported, and treated pastures become re-infested by neighboring fields and streams.
- Drenching the sheep with carbon tetra-chloride in paraffin oil has proven to be an alternative. However, drenching in more than recommended doses can be fatal, by causing liver damage, which could initiate the disease in sheep carrying "B. oedematiens" spores.
- Drainage is an effective option to eliminate the snails. However, draining the places where the grass grows eliminates a source of food for the sheep and creates other unwanted problems.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
Surgical removal or treatment with albendazole or ivermectin is recommended.
The most prescribed treatment for gnathostomiasis is surgical removal of the larvae but this is only effective when the worms are located in an accessible location. In addition to surgical excision, albendazole and ivermectin have been noted in their ability to eliminate the parasite. Albendazole is recommended to be administered at 400 mg daily for 21 days as an adjunct to surgical excision, while ivermectin is better tolerated as a single dose. Ivermectin can also serve as a replacement for those that can’t handle albendazole 200 ug/kg p.o. as a single dose. However, ivermectin has been shown to be less effective then albendazole.
Staphylococcal enteritis may be avoided by using proper hygiene and sanitation with food preparation. This includes thoroughly cooking all meats. If food is to be stored longer than two hours, keep hot foods hot (over 140 °F) and cold foods cold (40 °F or under). Ensure to refrigerate leftovers promptly and store cooked food in a wide, shallow container and refrigerate as soon as possible. Sanitation is very important. Keep kitchens and food-serving areas clean and sanitized. Finally, as most staphylococcal food poisoning are the result of food handling, hand washing is critical. Food handlers should use hand sanitizers with alcohol or thorough hand washing with soap and water.
Tips for hand washing:
1. Wash hands with warm, soapy water before and after handling raw foods.
2. Always wash your hands after using the bathroom, after changing a baby's diaper, after touching pets or other animals, and after sneezing or coughing
3. Properly dress or glove.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Yersiniosis is usually self-limiting and does not require treatment. For severe infections (sepsis, focal infection) especially if associated with immunosuppression, the recommended regimen includes doxycycline in combination with an aminoglycoside. Other antibiotics active against "Y. enterocolitica" include trimethoprim-sulfamethoxasole, fluoroquinolones, ceftriaxone, and chloramphenicol. "Y. enterocolitica" is usually resistant to penicillin G, ampicillin, and cephalotin due to beta-lactamase production.
Proximal enteritis usually is managed medically. This includes nasogastric intubation every 1–2 hours to relieve gastric pressure secondary to reflux, which often produces to 2–10 L, as well as aggressive fluid support to maintain hydration and correct electrolyte imbalances. Maintaining hydration in these patients can be very challenging. In some cases, fluid support may actually increase reflux production, due to the decreased intravascular oncotic pressure from low total protein and albumin levels, leading to loss of much of these IV fluids into the intestinal lumen. These horses will often display dependent edema (edema that collects in locations based on gravity). Colloids such as plasma or Hetastarch may be needed to improve intravascular oncotic pressure, although they can be cost prohibitive for many owners. Reflux levels are monitored closely to help evaluate fluid losses, and horses recovering from DPJ show improved hydration with decreased reflux production and improved attitude.
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for pain relief, reduction of inflammation, and for their anti-endotoxin effects, but care must be taken since they may produce gastrointestinal ulceration and damage the kidneys. Due to a suspected link to "Clostridial" infection, anti-microbials are often administered, usually penicillin or metronidazole. Aminoglycosides should be used with extreme caution due to the risk of nephrotoxicosis (damage to the kidney). The mucosa of the intestines is damaged with DPJ, often resulting in absorption of endotoxin and risking laminitis, so therapy to combat and treat endotoxemia is often employed. This includes treatment with drugs that counteract endotoxin such as Polymyxin B and Bio-Sponge, fluid support, and laminitis prevention such as icing of the feet. Prokinetic drugs such as lidocaine, erythromycin, metoclopramide, and bethanechol are often used to treat the ileus associated with the disease.
Horses are withheld food until reflux returns to less than 1–2 L of production every 4 hours, and gut sounds return, often requiring 3–7 days of therapy. Parenteral nutrition is often provided to horses that are withheld feed for greater than 3–4 days. It is suspected to improve healing and shorten the duration of the illness, since horses often become cachexic due to the protein losing enteropathy associated with this disease.
Surgery may need to be performed to rule out colic with similar presenting signs such as obstruction or strangulation, and in cases that are long-standing (> 7 days) to perform a resection and anastomosis of the diseased bowel. However, some horses have recovered with long-term medical support (up to 20 days).
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
Enterocolitis or coloenteritis is an inflammation of the digestive tract, involving enteritis of the small intestine and colitis of the colon. It may be caused by various infections, with bacteria, viruses, fungi, parasites, or other causes. Common clinical manifestations of enterocolitis are frequent diarrheal defecations, with or without nausea, vomiting, abdominal pain, fever, chills, alteration of general condition. General manifestations are given by the dissemination of the infectious agent or its toxins throughout the body, or – most frequently – by significant losses of water and minerals, the consequence of diarrhea and vomiting.
Among the causal agents of acute enterocolitis are:
- bacteria: "Salmonella", "Shigella", "Escherichia coli", "Campylobacter" etc.;
- viruses: enteroviruses, rotaviruses, Norwalk virus, adenoviruses;
- fungi: candidiasis, especially in immunosuppressed patients or who have previously received prolonged antibiotic treatment;
- parasites: "Giardia lamblia" (with high frequency of infestation in the population, but not always with clinical manifestations), "Balantidium coli", "Blastocystis homnis", "Cryptosporidium" (diarrhea in people with immunosuppression), "Entamoeba histolytica" (produces the amebian dysentery, common in tropical areas).
This applies once an infestation is established. In many circles the first response to cutaneous myiasis once the breathing hole has formed, is to cover the air hole thickly with petroleum jelly. Lack of oxygen then forces the larva to the surface, where it can more easily be dealt with. In a clinical or veterinary setting there may not be time for such tentative approaches, and the treatment of choice might be more direct, with or without an incision. First the larva must be eliminated through pressure around the lesion and the use of forceps. Secondly the wound must be cleaned and disinfected. Further control is necessary to avoid further reinfestation.
Livestock may be treated prophylactically with slow release boluses containing ivermectin which can provide long-term protection against the development of the larvae.
Sheep also may be dipped, a process which involves drenching the animals in persistent insecticide to poison the larvae before they develop into a problem.
Specific types of enterocolitis include:
- necrotizing enterocolitis (most common in premature infants)
- pseudomembranous enterocolitis (also called "Pseudomembranous colitis")
Crohn's disease – also known as regional enteritis, it can occur along any surface of the gastrointestinal tract. In 40% of cases it is limited to the small intestine.
Coeliac disease – caused by an autoimmune reaction to gluten by genetically predisposed individuals.
Eosinophilic enteropathy – a condition where eosinophils build up in the gastrointestinal tract and blood vessels, leading to polyp formation, necrosis, inflammation and ulcers. It is most commonly seen in patients with a history of atopy, however is overall relatively uncommon.
The first control method is preventive and aims to eradicate the adult flies before they can cause any damage and is called vector control. The second control method is the treatment once the infestation is present, and concerns the infected animals (including humans).
The principal control method of adult populations of myiasis inducing flies involves insecticide applications in the environment where the target livestock is kept. Organophosphorus or organochlorine compounds may be used, usually in a spraying formulation. One alternative prevention method is the sterile insect technique (SIT) where a significant number of artificially reared sterilized (usually through irradiation) male flies are introduced. The male flies compete with wild breed males for females in order to copulate and thus cause females to lay batches of unfertilized eggs which cannot develop into the larval stage.
One prevention method involves removing the environment most favourable to the flies, such as by removal of the tail. Another example is the crutching of sheep, which involves the removal of wool from around the tail and between the rear legs, which is a favourable environment for the larvae. Another, more permanent, practice which is used in some countries is mulesing, where skin is removed from young animals to tighten remaining skin – leaving it less prone to fly attack.
To prevent myiasis in humans, there is a need for general improvement of sanitation, personal hygiene, and extermination of the flies by insecticides. Clothes should be washed thoroughly, preferably in hot water, dried away from flies, and ironed thoroughly. The heat of the iron kills the eggs of myiasis-causing flies.
In almost all cases, recluse bites are self-limited and typically heal without any medical intervention. Recommendations to limit the extent of damage include elevation and immobilization of the affected limb, application of ice. Both local wound care, and tetanus prophylaxis are simple standards. There is no established treatment for more extensive necrosis. Many therapies have been used including hyperbaric oxygen, dapsone, antihistamines (e.g., cyproheptadine), antibiotics, dextran, glucocorticoids, vasodilators, heparin, nitroglycerin, electric shock, curettage, surgical excision, and antivenom. None of these treatments conclusively show benefit. Studies have shown surgical intervention is ineffective and may worsen outcome. Excision may delay wound healing, cause abscesses, and lead to objectionable scarring.
Dapsone, an antibiotic, is commonly used in the United States and Brazil for the treatment of necrosis. There have been conflicting reports with some supporting its efficacy and others have suggested it should no longer be used routinely, if at all.
Infected fish should be moved into high quality water, where they may recover if their clinical signs are mild.
If disease occurs eradication is required. Once the disease is eradicated good husbandry, surveillance and biosecurity measures are necessary to prevent recurrence. In countries free of epizootic ulcerative syndrome, quarantine and health certificates are necessary for the movement of all live fish to prevent the introduction of the disease.
Despite being one of the few medically important spider bites, there is no established treatment for the bite of a Loxosceles spider. Physicians wait for the body to heal itself, and assist with cosmetic appearance. There are, however, some remedies currently being researched.
Anti-venoms are commercially prepared antibodies to toxins in animal bites. They are specific for each bite. There are several anti-venoms commercially available in Brazil, which have been shown to be effective in controlling the spread of necrosis in rabbits. When administered immediately, they can almost entirely neutralize any ill effects. If too much time is allowed to pass, the treatment becomes ineffective. Most victims do not seek medical attention within the first twelve hours of being bitten, and these anti-venoms are largely ineffective after this point. Because of this, anti-venoms are not being developed more widely. They have, however, been proven to be very effective if administered in a timely manner and could be utilized in Brazil as a legitimate technique.
Most spider bites are harmless, and require no specific treatment. Treatment of bites may depend on the type of spider; thus, capture of the spider—either alive, or in a well-preserved condition, is useful.
Treatment of spider bites includes washing the wound with soap and water and ice to reduce inflammation. Analgesics and antihistamines may be used; however, antibiotics are not recommended unless there is also a bacterial infection present. Black widow post-envenomation treatment seeks to control resulting pain and nausea.
In the case of bites by widow spiders, Australian funnel-web spiders, or Brazilian wandering spiders, medical attention should be sought immediately as in some cases the bites of these spiders develop into a medical emergency. Antivenom is available for severe widow and funnel-web envenomation.