Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
To treat a septal haematoma it is incised & drained to prevent avascular necrosis of the septal hyaline cartilage which depends on diffusion of nutrients from its attached nasal mucosa. Small hematomas can be aspirated with a wide-bore needle. Large hematomas are drained by an incision parallel to nasal floor. Systemic antibiotics are given after the incision and drainage to prevent local infection.
Septal perforations are managed with a multitude of options. The treatment often depends on the severity of symptoms and the size of the perforations. Generally speaking anterior septal perforations are more bothersome and symptomatic. Posterior septal perforations, which mainly occur iatrogenically, are often managed with simple observation and are at times intended portions of skull base surgery. Septal perforations that are not bothersome can be managed with simple observation. While no septal perforation will spontaneously close, for the majority of septal perforations that are unlikely to get larger observation is an appropriate form of management. For perforations that bleed or are painful, initial management should include humidification and application of salves to the perforation edges to promote healing. Mucosalization of the perforation edges will help prevent pain and recurrent epistaxis and majority of septal perforations can be managed without surgery.
For perforations in which anosmia, or the loss of smell, and a persistent whistling are a concern the use of a sillicone septal button is a treatment option. These can be placed while the patient is awake and usually in the clinic setting. While complications of button insertion are minimal, the presence of the button can be bothersome to most patients.
For patients who desire definitive close, surgery is the only option. Prior to determining candidacy for surgical closure, the etiology of the perforation must be determined. Often this requires a biopsy of the perforation to rule out autoimmune causes. If a known cause such as cocaine is the offending agent, it must be ensured that the patient is not still using the irritant.
For those that are determined to be medically cleared for surgery, the anatomical location and size of the perforation must be determined. This is often done with a combination of a CT scan of the sinuses without contrast and an endoscopic evaluation by an Ear Nose and Throat doctor. Once dimensions are obtained the surgeon will decide if it is possible to close the perforation. Multiple approaches to access the septum have been described in the literature. While sublabial and midfacial degloving approaches have been described, the most popular today is the rhinoplasty approach. This can include both open and closed methods. The open method results in a scar on the columella, however, it allows for more visibility to the surgeon. The closed method utilizes an incision all on the inside of the nose. The concept behind closure includes bringing together the edges of mucosa on each side of the perforation with minimal tension. An interposition graft is also often used. The interposition graft provides extended stability and also structure to the area of the perforation. Classically, a graft from the scalp utilizing temporalis fascia was used. Kridel, et al., first described the usage of acellular dermis so that no further incisions are required; they reported an excellent closure rate of over 90%. Overall perforation closure rates are variable and often determined by the skill of the surgeon and technique used. Often surgeons who claim a high rate of closure choose perforations that are easier to close. An open rhinoplasty approach also allows for better access to the nose to repair any concurrent nasal deformities, such as saddle nose deformity, that occur with a septal perforation.
Treatment for a nasal septal abscess is similar to that of other bacterial infections. Aggressive broad spectrum antibiotics may be used after the infected area has been drained of fluids.
Most arachnoid cysts are asymptomatic and do not require treatment. Treatment may be necessary when symptomatic. A variety of procedures may be used to decompress (remove pressure from) the cyst.
- Surgical placement of a cerebral shunt:
- An internal shunt drains into the subdural compartment.
- A cystoperitoneal shunt drains to the peritoneal cavity.
- Craniotomy with excision
- Various endoscopic techniques are proving effective, including laser-assisted techniques.
- Drainage by needle aspiration or burr hole.
- Capsular resection
- Pharmacological treatments may address specific symptoms such as seizures or pain.
Treatment most commonly involves the removal of the complete lesion during a single procedure, via the frontonasal bone flaps; recurrence is likely. Ablation treatment with an looks to be a possibility for permanent removal.
Some success has been seen using intralesional injections of formalin, performed by endoscopy.
Nasal septal hematoma is a condition affecting the nasal septum. It can be associated with trauma.
Because the septal cartilage has no blood supply of its own and receives all of its nutrients and oxygen from the perichondrium, an untreated septal hematoma may lead to destruction of the septum. Immediate drainage is necessary. Failure to recognise septal hematomas, or treat in a timely fashion, can cause a saddle nose deformity.
Treatment has traditionally been splenectomy. However, splenectomy is avoided if possible, particularly in children, to avoid the resulting permanent susceptibility to bacterial infections. Most small, and some moderate-sized lacerations in stable patients (particularly children) are managed with hospital observation and sometimes transfusion rather than surgery. Embolization, blocking off of the hemorrhaging vessels, is a newer and less invasive treatment. When surgery is needed, the spleen can be surgically repaired in a few cases, but splenectomy is still the primary surgical treatment, and has the highest success rate of all treatments.
Management consists of vigilant observation over days to detect progression. The subgaleal space is capable of holding up to 50% of a newborn baby's blood and can therefore result in acute shock and death. Fluid bolus may be required if blood loss is significant and patient becomes tachycardic. Transfusion and phototherapy may be necessary. Investigation for coagulopathy may be indicated.
Treatment of a subdural hematoma depends on its size and rate of growth. Some small subdural hematomas can be managed by careful monitoring until the body heals itself. Other small subdural hematomas can be managed by inserting a temporary small catheter through a hole drilled through the skull and sucking out the hematoma; this procedure can be done at the bedside. Large or symptomatic hematomas require a craniotomy, the surgical opening of the skull. A surgeon then opens the dura, removes the blood clot with suction or irrigation, and identifies and controls sites of bleeding. Postoperative complications include increased intracranial pressure, brain edema, new or recurrent bleeding, infection, and seizure. The injured vessels must be repaired.
Depending on the size and deterioration, age of the patient, and anaesthetic risk posed, subdural hematomas occasionally require craniotomy for evacuation; most frequently, simple burr holes for drainage; often conservative treatment; and rarely, palliative treatment in patients of extreme age or with no chance of recovery.
In those with a chronic subdural hematoma, but without a history of seizures, the evidence is unclear if using anticonvulsants is harmful or beneficial.
Most arachnoid cysts are asymptomatic, and do not require treatment. Where complications are present, leaving arachnoid cysts untreated, may cause permanent severe neurological damage due to the progressive expansion of the cyst(s) or hemorrhage (bleeding). However, with treatment most individuals with symptomatic arachnoid cysts do well.
More specific prognoses are listed below:
- Patients with impaired preoperative cognition had postoperative improvement after surgical decompression of the cyst.
- Surgery can resolve psychiatric manifestations in selected cases.
It is sometimes treated with surgery, which involves rerouting blood from the right atrium into the left atrium with a patch or use of the Warden procedure. However, interest is increasing in catheter-based interventional approaches, as well as medical therapy for less severe cases.
If diagnosed within the first few hours of presentation, the pooling blood may be evacuated using a syringe. Once the blood has clotted, removal by this method is no longer possible and the clot can be removed via an incision over the lump under local anesthetic. The incision is not stitched, but will heal very well. Care needs to be taken in regard to bleeding from the wound and possible infection with fecal bacteria. If left alone it will usually heal within a few days or weeks. The topical application of a cream containing a Heparinoid is often advised to clear the clot .
Small breast hematomas that cause no discomfort often require merely clinical observation, with ultrasound being used to monitor the resolution of the hematoma.
Large breast hematomas, or those that are not becoming smaller or that are causing discomfort, usually require drainage. Also hematomas that occur after surgery for excision of a malignant tumor are drained, because a hematoma to which irradiation is applied is unlikely to ever resolve. A recent hematoma can be drained by means of needle aspiration or (rarely) open surgical drainage.
Prognosis for this condition varies according to extent of the hematoma, but is normally fairly good. Smaller hematomae carry a 99% chance of full recovery, with larger ones carrying a recovery rate ranging from 80 to 90%. Occasional epistaxis may follow the surgery, but this is temporary and should subside within 2 to 3 weeks after surgery.
Treatment for light bruises is minimal and may include RICE (rest, ice, compression, elevation), painkillers (particularly NSAIDs) and, later in recovery, light stretching exercises. Particularly, immediate application of ice while elevating the area may reduce or completely prevent swelling by restricting blood flow to the area and preventing internal bleeding. Rest and preventing re-injury is essential for rapid recovery. Applying a medicated cream containing mucopolysaccharide polysulfuric acid (e.g., Hirudoid) may also speed the healing process. Other topical creams containing skin-fortifying ingredients, including but not limited to retinol or alpha hydroxy acids, such as DerMend, can improve the appearance of bruising faster than if left to heal on its own.
Very gently massaging the area and applying heat may encourage blood flow and relieve pain according to the gate control theory of pain, although causing additional pain may indicate the massage is exacerbating the injury. As for most injuries, these techniques should not be applied until at least three days following the initial damage to ensure all internal bleeding has stopped, because although increasing blood flow will allow more healing factors into the area and encourage drainage, if the injury is still bleeding this will allow more blood to seep out of the wound and cause the bruise to become worse.
In most cases hematomas spontaneously revert, but in cases of large hematomas or those localized in certain organs ("e.g.", the brain), the physician may optionally perform a puncture of the hematoma to allow the blood to exit.
In TAPVC without obstruction, surgical redirection can be performed within the first month of life. The operation is performed under general anesthesia. The four pulmonary veins are reconnected to the left atrium, and any associated heart defects such as atrial septal defect, ventricular septal defect, patent foramen ovale, and/or patent ductus arteriosus are surgically closed. With obstruction, surgery should be undertaken emergently. PGE1 should be given because a patent ductus arteriosus allows oxygenated blood to go from the circulation of the right heart to the systemic circulation.
Tet spells may be treated with beta-blockers such as propranolol, but acute episodes require rapid intervention with morphine or intranasal fentanyl to reduce ventilatory drive, a vasopressor such as phenylephrine, or norepinephrine to increase systemic vascular resistance, and IV fluids for volume expansion.
Oxygen (100%) may be effective in treating spells because it is a potent pulmonary vasodilator and systemic vasoconstrictor. This allows more blood flow to the lungs by decreasing shunting of deoxygenated blood from the right to left ventricle through the VSD. There are also simple procedures such as squatting and the knee chest position which increase systemic vascular resistance and decrease right-to-left shunting of deoxygenated blood into the systemic circulation.
Potential complications of a nasal septal abscess include cavernous sinus thrombophlebitis, septal perforation, or saddle deformity due to cartilage necrosis.
Because an acute hematoma can lead to cauliflower ear, prompt evacuation of the blood is needed to prevent permanent deformity. The outer ear is prone to infections, so antibiotics are usually prescribed. Pressure is applied by bandaging, helping the skin and the cartilage to reconnect. Without medical intervention the ear can suffer serious damage. Disruption of the ear canal is possible. The outer ear may wrinkle, and can become slightly pale due to reduced blood flow; hence the common term "cauliflower ear". Cosmetic procedures are available that can possibly improve the appearance of the ear.
The Blalock-Thomas-Taussig procedure, initially the only surgical treatment available for tetralogy of Fallot, was palliative but not curative. The first total repair of tetralogy of Fallot was done by a team led by C. Walton Lillehei at the University of Minnesota in 1954 on an 11-year-old boy. Total repair on infants has had success from 1981, with research indicating that it has a comparatively low mortality rate.
Total repair of tetralogy of Fallot initially carried a high mortality risk, but this risk has gone down steadily over the years. Surgery is now often carried out in infants one year of age or younger with less than 5% perioperative mortality. The open-heart surgery is designed to relieve the right ventricular outflow tract stenosis by careful resection of muscle and to repair the VSD with a Gore-Tex patch or a homograft.> Additional reparative or reconstructive surgery may be done on patients as required by their particular cardiac anatomy.
Percutaneous device closure involves the passage of a catheter into the heart through the femoral vein guided by fluoroscopy and echocardiography. An example of a percutaneous device is a device which has discs that can expand to a variety of diameters at the end of the catheter. The catheter is placed in the right femoral vein and guided into the right atrium. The catheter is guided through the atrial septal wall and one disc (left atrial) is opened and pulled into place. Once this occurs, the other disc (right atrial) is opened in place and the device is inserted into the septal wall. This type of PFO closure is more effective than drug or other medical therapies for decreasing the risk of future thromboembolism.
Percutaneous closure of an ASD is currently only indicated for the closure of secundum ASDs with a sufficient rim of tissue around the septal defect so that the closure device does not impinge upon the superior vena cava, inferior vena cava, or the tricuspid or mitral valves. The Amplatzer Septal Occluder (ASO) is commonly used to close ASDs. The ASO consists of two self-expandable round discs connected to each other with a 4-mm waist, made up of 0.004– to 0.005-inch Nitinol wire mesh filled with Dacron fabric. Implantation of the device is relatively easy. The prevalence of residual defect is low. The disadvantages are a thick profile of the device and concern related to a large amount of nitinol (a nickel-titanium compound) in the device and consequent potential for nickel toxicity.
Percutaneous closure is the method of choice in most centres.
Surgical closure of an ASD involves opening up at least one atrium and closing the defect with a patch under direct visualization.
Subungual hematomas are treated by either releasing the pressure conservatively when tolerable or by drilling a hole through the nail into the hematoma (trephining), or by removing the entire nail. Trephining is generally accomplished by using a heated instrument to pass through the nail into the blood clot. Removal of the nail is typically done when the nail itself is disrupted, a large laceration requiring suturing is suspected, or a fracture of the tip of the finger occurs. Although general anesthesia is generally not required, a digital nerve block is recommended to be performed if the nail is to be removed.
Subungual hematomas typically heal without incident, though infection or disruption of the nail (onycholysis) may occur.
A device, known as the Amplatzer muscular VSD occluder, may be used to close certain VSDs. It was initially approved in 2009. It appears to work well and be safe. The cost is also lower than having open heart surgery. The device is placed through a small incision in the groin.
The Amplatzer septal occluder was shown to have full closure of the ventricular defect within the 24 hours of placement. It has a low risk of embolism after implantation. Some tricuspid valve regurgitation was shown after the procedure that could possibly be due from the right ventricular disc. There have been some reports that the Amplatzer septal occluder may cause life-threatening erosion of the tissue inside the heart. This occurs in one percent of people implanted with the device and requires immediate open-heart surgery. This erosion occurs due to improper sizing of the device resulting with it being too large for the defect, causing rubbing of the septal tissue and erosion.
a) Surgical closure of a Perimembranous VSD is performed on cardiopulmonary bypass with ischemic arrest. Patients are usually cooled to 28 degrees. Percutaneous Device closure of these defects is rarely performed in the United States because of the reported incidence of both early and late onset complete heart block after device closure, presumably secondary to device trauma to the AV node.
b) Surgical exposure is achieved through the right atrium. The tricuspid valve septal leaflet is retracted or incised to expose the defect margins.
c) Several patch materials are available, including native pericardium, bovine pericardium, PTFE (Gore-Tex or Impra), or Dacron.
d) Suture techniques include horizontal pledgeted mattress sutures, and running polypropylene suture.
e) Critical attention is necessary to avoid injury to the conduction system located on the left ventricular side of the interventricular septum near the papillary muscle of the conus.
f) Care is taken to avoid injury to the aortic valve with sutures.
g) Once the repair is complete, the heart is extensively deaired by venting blood through the aortic cardioplegia site, and by infusing Carbon Dioxide into the operative field to displace air.
h) Intraoperative transesophageal echocardiography is used to confirm secure closure of the VSD, normal function of the aortic and tricuspid valves, good ventricular function, and the elimination of all air from the left side of the heart.
i) The sternum, fascia and skin are closed, with potential placement of a local anesthetic infusion catheter under the fascia, to enhance postoperative pain control.
j) Multiple muscular VSDs are a challenge to close, achieving a complete closure can be aided by the use of fluorescein dye.