Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If non-pharmacological measures are not effective, medications may be tried.
- Non-steroidal anti-inflammatory drugs (NSAIDs) are typically tried first. NSAIDs have been shown to be more effective than placebo, and are usually more effective than paracetamol (acetaminophen).
- In severe back pain not relieved by NSAIDs or acetaminophen, opioids may be used. However, long-term use of opioids has not been proven to be effective at treating back pain. Opioids have not always been shown to be better than placebo for chronic back pain when the risks and benefits are considered.
- Skeletal muscle relaxers may also be used. Their short term use has been shown to be effective in the relief of acute back pain. However, the evidence of this effect has been disputed, and these medications do have negative side-effects.
- In people with nerve root pain and acute radiculopathy, there is evidence that a single dose of steroids, such as dexamethasone, may provide pain relief.
- Epidural corticosteroid injection (ESI) is a procedure in which steroid medications are injected into the epidural space. The steroid medications reduce inflammation and thus decrease pain and improve function. ESI has long been used to both diagnose and treat back pain, although recent studies have shown a lack of efficacy in treating low back pain.
The management of low back pain often includes medications for the duration that they are beneficial. With the first episode of low back pain the hope is a complete cure; however, if the problem becomes chronic, the goals may change to pain management and the recovery of as much function as possible. As pain medications are only somewhat effective, expectations regarding their benefit may differ from reality, and this can lead to decreased satisfaction.
The medication typically recommended first are NSAIDs (though not aspirin) or skeletal muscle relaxants and these are enough for most people. Benefits with NSAIDs; however, is often small. High-quality reviews have found acetaminophen (paracetamol) to be no more effective than placebo at improving pain, quality of life, or function. NSAIDs are more effective for acute episodes than acetaminophen; however, they carry a greater risk of side effects including: kidney failure, stomach ulcers and possibly heart problems. Thus, NSAIDs are a second choice to acetaminophen, recommended only when the pain is not handled by the latter. NSAIDs are available in several different classes; there is no evidence to support the use of COX-2 inhibitors over any other class of NSAIDs with respect to benefits. With respect to safety naproxen may be best. Muscle relaxants may be beneficial.
If the pain is still not managed adequately, short term use of opioids such as morphine may be useful. These medications carry a risk of addiction, may have negative interactions with other drugs, and have a greater risk of side effects, including dizziness, nausea, and constipation. The effect of long term use is unknown. Specialist groups advise against general long-term use of opioids for chronic low back pain.
For older people with chronic pain, opioids may be used in those for whom NSAIDs present too great a risk, including those with diabetes, stomach or heart problems. They may also be useful for a select group of people with neuropathic pain.
Antidepressants may be effective for treating chronic pain associated with symptoms of depression, but they have a risk of side effects. Although the antiseizure drugs gabapentin and carbamazepine are sometimes used for chronic low back pain and may relieve sciatic pain, there is insufficient evidence to support their use. Systemic oral steroids have not been shown to be useful in low back pain. Facet joint injections and steroid injections into the discs have not been found to be effective in those with persistent, non-radiating pain; however, they may be considered for those with persistent sciatic pain. Epidural corticosteroid injections provide a slight and questionable short-term improvement in those with sciatica but are of no long term benefit. There are also concerns of potential side effects.
Back pain is generally treated with non-pharmacological therapy first, as it typically resolves without the use of medication. Superficial heat and massage, acupuncture, and spinal manipulation therapy may be recommended.
- Heat therapy is useful for back spasms or other conditions. A review concluded that heat therapy can reduce symptoms of acute and sub-acute low-back pain.
- Regular activity and gentle stretching exercises is encouraged in uncomplicated back pain, and is associated with better long-term outcomes. Physical therapy to strengthen the muscles in the abdomen and around the spine may also be recommended. These exercises are associated with better patient satisfaction, although it has not been shown to provide functional improvement. However, one study found that exercise is effective for chronic back pain, but not for acute pain. If used, they should be performed under supervision of a licensed health professional.
- Massage therapy may give short-term pain relief, but not functional improvement, for those with acute lower back pain. It may also give short-term pain relief and functional improvement for those with long-term (chronic) and sub-acute lower pack pain, but this benefit does not appear to be sustained after 6 months of treatment. There does not appear to be any serious adverse effects associated with massage.
- Acupuncture may provide some relief for back pain. However, further research with stronger evidence needs to be done.
- Spinal manipulation is a widely-used method of treating back pain, although there is no evidence of long-term benefits.
- "Back school" is an intervention that consists of both education and physical exercises. A 2016 Cochrane review found the evidence concerning back school to be very low quality and was not able to make generalizations as to whether back school is effective or not.
Increasing general physical activity has been recommended, but no clear relationship to pain or disability has been found when used for the treatment of an acute episode of pain. For acute pain, low- to moderate-quality evidence supports walking. Treatment according to McKenzie method is somewhat effective for recurrent acute low back pain, but its benefit in the short term does not appear significant. There is tentative evidence to support the use of heat therapy for acute and sub-chronic low back pain but little evidence for the use of either heat or cold therapy in chronic pain. Weak evidence suggests that back belts might decrease the number of missed workdays, but there is nothing to suggest that they will help with the pain. Ultrasound and shock wave therapies do not appear effective and therefore are not recommended.
Exercise therapy is effective in decreasing pain and improving function for those with chronic low back pain. It also appears to reduce recurrence rates for as long as six months after the completion of program and improves long-term function. There is no evidence that one particular type of exercise therapy is more effective than another. The Alexander technique appears useful for chronic back pain, and there is tentative evidence to support the use of yoga. Transcutaneous electrical nerve stimulation (TENS) has not been found to be effective in chronic low back pain. Evidence for the use of shoe insoles as a treatment is inconclusive. Peripheral nerve stimulation, a minimally-invasive procedure, may be useful in cases of chronic low back pain that do not respond to other measures, although the evidence supporting it is not conclusive, and it is not effective for pain that radiates into the leg.
Although treatment for tennis elbow prior 2010 was unknown because the etiology remained unclear, tests confirmed that the cause was an imbalance with the agonist-antagonist functional relationship. Treatment now includes anti-inflammatory medicines, rest, equipment check, physical therapy, braces, steroid injections, shock wave therapy and if symptoms persist after 6 to 12 months, doctors may recommend surgery.
Although treatment varies depending on how bad eye alignment is and also the underlying causes of strabismus. Treatment for strabismus may include orthoptics a term used for eye muscle training, this treatment can be provided by orthoptists and also optometrists. Other treatment may include wearing eye patches aimed at strengthening the weaker eye while inhibiting the stronger eye, an alternative to eye patches is the use of an opaque lens, other treatments may include eye drops to temporarily inhibit the stronger eye and at any age eye muscle surgery can be done to correct the muscular balance of the ocular muscles.
Although the cause of scoliosis can sometimes remain unknown (idiopathic scoliosis) there is treatment available that targets at strengthening the back muscles, for milder cases usually do not require medical attention, more severe cases require either muscle strengthening exercises aimed at the back muscles and even special back braces or surgery can be recommended if the case is extreme. Studies have shown that treatment with a special back brace among children ranging from 10–16 years can be successful and using this method of muscle training scoliosis can be cured with non-surgical treatment.
Treatment for acquired noninflammatory myopathy is directed towards resolution of the underlying condition, pain management, and muscle rehabilitation.
Drug induced ANIMs can be reversed or improved by tapering off of the drugs and finding alternative care. Hyperthyroidism induced ANIM can be treated through anti-thyroid drugs, surgery and not eating foods high in Iodine such as kelp. Treatment of the hyperthyroidism results in complete recovery of the myopathy. ANIM caused by vitamin D deficiency can easily be resolved by taking vitamin supplements and increasing one's exposure to direct sunlight.
Pain can be managed through massaging affected areas and the use of nonsteroidal anti-inflammatory drugs (NSAIDs).
Exercise, physical therapy, and occupational therapy can be used to rehabilitate affected muscle areas and resist the atrophy process.
As with all myopathies, the use of walkers, canes, and braces can assist with the mobility of the afflicted individual.
Treatments that may help with symptoms include simple pain medication and medications for fevers such as ibuprofen and acetaminophen (paracetamol). It, however, is not clear if acetaminophen helps with symptoms. It is not known if over the counter cough medications are effective for treating an acute cough. Cough medicines are not recommended for use in children due to a lack of evidence supporting effectiveness and the potential for harm. In 2009, Canada restricted the use of over-the-counter cough and cold medication in children six years and under due to concerns regarding risks and unproven benefits. The misuse of dextromethorphan (an over-the-counter cough medicine) has led to its ban in a number of countries. Intranasal corticosteroids have not been found to be useful.
In adults short term use of nasal decongestants may have a small benefit. Antihistamines may improve symptoms in the first day or two; however, there is no longer-term benefit and they have adverse effects such as drowsiness. Other decongestants such as pseudoephedrine appear effective in adults. Ipratropium nasal spray may reduce the symptoms of a runny nose but has little effect on stuffiness. The safety and effectiveness of nasal decongestant use in children is unclear.
Due to lack of studies, it is not known whether increased fluid intake improves symptoms or shortens respiratory illness, and there is a similar lack of data for the use of heated humidified air. One study has found chest vapor rub to provide some relief of nocturnal cough, congestion, and sleep difficulty.
Treatment of hypokalemic periodic paralysis focuses on preventing further attacks and relieving acute symptoms. Avoiding carbohydrate-rich meals, strenuous exercise and other identified triggers, and taking acetazolamide (Diamox®) or another carbonic anhydrase inhibitor, may help prevent attacks of weakness. Some patients also take potassium-sparing diuretics such as spironolactone (Aldactone®) to help maintain potassium levels.
Paralysis attacks can be managed by drinking one of various potassium salts dissolved in water (debate exists over which, if any one in particular, is best used, but potassium chloride and bicarbonate are common). Rapidly absorbed boluses of liquid potassium are generally needed to abort an attack, but some patients also find positive maintenance results with time-released potassium tablets. IV potassium is seldom justified unless the patient is unable to swallow. Daily potassium dosage may need to be much higher than for potassium replacement from simple hypokalemia: 100-150 mEqs of potassium is often needed to manage daily fluctuations in muscle strength and function.
No medications or herbal remedies have been conclusively demonstrated to shorten the duration of infection. Treatment thus comprises symptomatic relief. Getting plenty of rest, drinking fluids to maintain hydration, and gargling with warm salt water are reasonable conservative measures. Much of the benefit from treatment is, however, attributed to the placebo effect.
Corticosteroid injections can be effective for temporary relief from symptoms while a person develops a long-term strategy that fits their lifestyle. This form of treatment is thought to reduce discomfort in those with CTS due to its ability to decrease median nerve swelling. The use of ultrasound while performing the injection is more expensive but leads to faster resolution of CTS symptoms. The injections are done under local anesthesia. This treatment is not appropriate for extended periods, however. In general, local steroid injections are only used until more definitive treatment options can be used. Corticosteroid injections do not appear to be very effective for slowing disease progression.
Exercise can improve symptoms, as can revascularization. Both together may be better than one intervention of its own.
Pharmacological options exist, as well. Medicines that control lipid profile, diabetes, and hypertension may increase blood flow to the affected muscles and allow for increased activity levels. Angiotensin converting enzyme inhibitors, beta-blockers, antiplatelet agents (aspirin and clopidogrel), naftidrofuryl, pentoxifylline, and cilostazol (selective PDE3 inhibitor) are used for the treatment of intermittent claudication. However, medications will not remove the blockages from the body. Instead, they simply improve blood flow to the affected area.
Catheter-based intervention is also an option. Atherectomy, stenting, and angioplasty to remove or push aside the arterial blockages are the most common procedures for catheter-based intervention. These procedures can be performed by interventional radiologists, interventional cardiologists, vascular surgeons, and thoracic surgeons, among others.
Surgery is the last resort; vascular surgeons can perform either endarterectomies on arterial blockages or perform an arterial bypass. However, open surgery poses a host of risks not present with catheter-based interventions.
Generally accepted treatments include: physiotherapy, steroids either orally or injected locally, splinting, and surgical release of the transverse carpal ligament. Limited evidence suggests that gabapentin is no more effective than placebo for CTS treatment. There is insufficient evidence for therapeutic ultrasound, yoga, acupuncture, low level laser therapy, vitamin B6, and exercise. Change in activity may include avoiding activities that worsen symptoms.
The American Academy of Orthopedic Surgeons recommends proceeding conservatively with a course of nonsurgical therapies tried before release surgery is considered. A different treatment should be tried if the current treatment fails to resolve the symptoms within 2 to 7 weeks. Early surgery with carpal tunnel release is indicated where there is evidence of median nerve denervation or a person elects to proceed directly to surgical treatment. Recommendations may differ when carpal tunnel syndrome is found in association with the following conditions: diabetes mellitus, coexistent cervical radiculopathy, hypothyroidism, polyneuropathy, pregnancy, rheumatoid arthritis, and carpal tunnel syndrome in the workplace.
Treatment is often with NSAIDs and antibiotics however, this is not always effective.
Trochleitis is diagnosed based on three criteria: 1) demonstration of inflammation of superior oblique tendon/ trochlea region, 2) periorbital pain and tenderness to palpation in the area of the sore trochlea, and 3) worsening of pain on attempted vertical eye movement, particularly with adduction of the eye. It is important to identify trochleitis because it is a treatable condition and the patient can benefit much from pain relief. Treatment consists of a single injection of corticosteroids to the affected peritrochlear region. A specific "cocktail" consisting of 0.5 ml of depomedrol (80 mg/ml) and 0.5 ml of 2% lidocaine can be injected into the trochlea; immediate relief due to the effects of the local anesthetic indicates successful placement. However, great care must be taken as the injection is in the region of several arteries, veins and nerves. The needle should not be too small (so as not to penetrate tiny structures), the surgeon should draw back on the syringe (to ensure not have pierced a vessel), the lidocaine should not contain epinephrine (which could cause vasospasm), and the pressure of the injection must always be controlled. Only a limited number of injections can be made as they would otherwise lead to muscle atrophy. Diagnosis can be confirmed by response to this treatment; pain and swelling are expected to disappear in 48–72 hours. Some patients experience recurrence of trochleitis.
A couple of medications are used to relieve pleurisy symptoms:
- Paracetamol (acetaminophen) or anti-inflammatory agents to control pain and decrease inflammation. Only indomethacin (brand name Indocin) has been studied with respect to relief of pleurisy.
- Codeine-based cough syrups to control the cough
There may be a role for the use of corticosteroids (for tuberculous pleurisy), tacrolimus (Prograf) and methotrexate (Trexall, Rheumatrex) in the treatment of pleurisy. Further studies are needed.
Chronic cases may be treated with tonsillectomy (surgical removal of tonsils) as a choice for treatment. Children have had only a modest benefit from tonsillectomy for chronic cases of tonsillitis.
Weakness or asthenia is a symptom of a number of different conditions. The causes are many and can be divided into conditions that have true or perceived muscle weakness. True muscle weakness is a primary symptom of a variety of skeletal muscle diseases, including muscular dystrophy and inflammatory myopathy. It occurs in neuromuscular junction disorders, such as myasthenia gravis.
The following may be helpful in the management of pleurisy:
- Lying on the painful side may be more comfortable
- Breathing deeply and coughing to clear mucus as the pain eases. Otherwise, pneumonia may develop.
- Getting rest
If the tonsillitis is caused by group A streptococcus, then antibiotics are useful, with penicillin or amoxicillin being primary choices. Cephalosporins and macrolides are considered good alternatives to penicillin in the acute setting. A macrolide such as erythromycin is used for people allergic to penicillin. Individuals who fail penicillin therapy may respond to treatment effective against beta-lactamase producing bacteria such as clindamycin or amoxicillin-clavulanate. Aerobic and anaerobic beta lactamase producing bacteria that reside in the tonsillar tissues can "shield" group A streptococcus from penicillins.
Once a diagnosis of JDMS is made, the treatment is often a 3-day course of Intravenous ("pulse") steroids (methylprednisolone, Solu-Medrol), followed by a high dose of oral prednisone (usually 1–2 mg/kg of body weight) for several weeks. This action usually brings the disease under control, lowering most lab tests to or near normal values. Some minor improvement in muscle symptoms may also be seen in this time, but normally it takes a long time for full muscle strength to be regained.
Once the disease process is under control, oral steroids are tapered gradually to minimize their side effects. Often, steroid-sparing drugs, such as methotrexate (a chemotherapy drug) or other DMARDs, are given to compensate for the reduction in oral steroids. Once the oral steroids are reduced to a less toxic level, the sparing agents can also be gradually withdrawn. Lab results are closely monitored during the tapering process to ensure that the disease does not recur.
In the cases where steroids or second-line drugs are not tolerated or are ineffective, there are other treatments that can be tried. These include other chemotherapy drugs, such as ciclosporin, infliximab, or other DMARDs. Another is intravenous immunoglobulin (IVIg), a blood product that has been shown to be very effective against JDMS.
To treat the skin rash, anti-malarial drugs, such as hydroxychloroquine (Plaquenil) are usually given. Topical steroid creams (hydrocortisone) may help some patients, and anti-inflammatory creams (such as tacrolimus) are proving to be very effective. Dry skin caused by the rash can be combated by regular application of sunscreen or any moisturizing cream. Most JDM patients are very sensitive to sun exposure, and sunburn may be a disease activity trigger in some, so daily application of high-SPF sunscreen is often recommended.
It was once believed that lactic acid build-up was the cause of muscle fatigue. The assumption was lactic acid had a "pickling" effect on muscles, inhibiting their ability to contract. The impact of lactic acid on performance is now uncertain, it may assist or hinder muscle fatigue.
Produced as a by-product of fermentation, lactic acid can increase intracellular acidity of muscles. This can lower the sensitivity of contractile apparatus to calcium ions (Ca) but also has the effect of increasing cytoplasmic Ca concentration through an inhibition of the chemical pump that actively transports calcium out of the cell. This counters inhibiting effects of potassium ions (K) on muscular action potentials. Lactic acid also has a negating effect on the chloride ions in the muscles, reducing their inhibition of contraction and leaving K as the only restricting influence on muscle contractions, though the effects of potassium are much less than if there were no lactic acid to remove the chloride ions. Ultimately, it is uncertain if lactic acid reduces fatigue through increased intracellular calcium or increases fatigue through reduced sensitivity of contractile proteins to Ca.
Muscle atrophy can be opposed by the signaling pathways which induce muscle hypertrophy, or an increase in muscle size. Therefore, one way in which not exercise induces an increase in muscle mass is to down regulate the pathways which have the opposite effect.
β-hydroxy β-methylbutyrate (HMB), a metabolite of leucine which is sold as a dietary supplement, has demonstrated efficacy in preventing the loss of muscle mass in several muscle wasting conditions in humans, particularly sarcopenia. A growing body of evidence supports the efficacy of HMB as a treatment for reducing, or even reversing, the loss of muscle mass, muscle function, and muscle strength in hypercatabolic disease states such as cancer cachexia; consequently, it is recommended that both the prevention and treatment of sarcopenia and muscle wasting in general include supplementation with HMB, regular resistance exercise, and consumption of a high-protein diet. Based upon a meta-analysis of seven randomized controlled trials that was published in 2015, HMB supplementation has efficacy as a treatment for preserving lean muscle mass in older adults. More research is needed to determine the precise effects of HMB on muscle strength and function in this age group.
Since the absence of muscle-building amino acids can contribute to muscle wasting (that which is torn down must be rebuilt with like material), amino acid therapy may be helpful for regenerating damaged or atrophied muscle tissue. The branched-chain amino acids or BCAAs (leucine, isoleucine, and valine) are critical to this process, in addition to lysine and other amino acids.
In severe cases of muscular atrophy, the use of an anabolic steroid such as methandrostenolone may be administered to patients as a potential treatment. A novel class of drugs, called SARM (selective androgen receptor modulators) are being investigated with promising results. They would have fewer side-effects, while still promoting muscle and bone tissue growth and regeneration. These claims are, however, yet to be confirmed in larger clinical trials.
One important rehabilitation tool for muscle atrophy includes the use of functional electrical stimulation to stimulate the muscles. This has seen a large amount of success in the rehabilitation of paraplegic patients.
Gargling salt water is often suggested but evidence looking at its usefulness is lacking. Alternative medicines are promoted and used for the treatment of sore throats. However, they are poorly supported by evidence.
The majority of time treatment is symptomatic. Specific treatments are effective for bacterial, fungal, and herpes simplex infections.
If one’s symptoms are mild, treatments like Massage, Exercise, and Stress management will suffice in reducing pain and pressure, but those with more severe symptoms are told to undergo unique therapies based on their exact situation. These patients most likely will have their postures and spine alignment fixed, and/or treatments like electrical stimulation may be used to help in reducing pain and aid in flexibility. Medicine, epidural injections and surgeries are also implemented to treat such a disorder.