Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Removal of the mast cell tumor through surgery is the treatment of choice. Antihistamines, such as diphenhydramine, are given prior to surgery to protect against the effects of histamine released from the tumor. Wide margins (two to three centimeters) are required because of the tendency for the tumor cells to be spread out around the tumor. If complete removal is not possible due to the size or location, additional treatment, such as radiation therapy or chemotherapy, may be necessary. Prednisone is often used to shrink the remaining tumor portion. H2 blockers, such as cimetidine, protect against stomach damage from histamine. Vinblastine and CCNU are common chemotherapy agents used to treat mast cell tumors.
Toceranib and masitinib, examples of receptor tyrosine kinase inhibitors, are used in the treatment of canine mast cell tumors. Both were recently approved by the U.S. Food and Drug Administration (FDA) as dog-specific anticancer drugs.
Grade I or II mast cell tumors that can be completely removed have a good prognosis. One study showed about 23 percent of incompletely removed grade II tumors recurred locally. Any mast cell tumor found in the gastrointestinal tract, paw, or on the muzzle has a guarded prognosis. Previous beliefs that tumors in the groin or perineum carried a worse prognosis have been discounted. Tumors that have spread to the lymph nodes or other parts of the body have a poor prognosis. Any dog showing symptoms of mastocytosis or with a grade III tumor has a poor prognosis. Dogs of the Boxer breed have a better than average prognosis because of the relatively benign behavior of their mast cell tumors. Multiple tumors that are treated similarly to solitary tumors do not seem to have a worse prognosis.
Mast cell tumors do not necessarily follow the histological prognosis. Further prognostic information can be provided by AgNOR stain of histological or cytological specimen. Even then, there is a risk of unpredictable behavior.
This type of carcinoma is commonly managed by local resection, cryotherapy, topical chemotherapy, and radiotherapy. Multimodal therapy has been shown to improve both visual prognosis and survival.
Mohs micrographic surgery has become the treatment of choice for this form of cancer. When used as the primary treatment modality for sebaceous carcinoma of the eyelid, Mohs surgery is associated with significantly lower local and distant recurrence rates.
Thyroidectomy and neck dissection show good results in early stages of SCTC. However, due to highly aggressive phenotype, surgical treatment is not always possible. The SCTC is a radioiodine-refractory tumor. Radiotherapy might be effective in certain cases, resulting in relatively better survival rate and quality of life. Vincristine, Adriamycin, and bleomycin are used for adjuvant chemotherapy, but their effects are not good enough according to published series.
Treatment can occasionally consist of "watchful waiting" (e.g. in CLL) or symptomatic treatment (e.g. blood transfusions in MDS). The more aggressive forms of disease require treatment with chemotherapy, radiotherapy, immunotherapy and—in some cases—a bone marrow transplant. The use of rituximab has been established for the treatment of B-cell–derived hematologic malignancies, including follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL).
If treatment has been successful ("complete" or "partial remission"), a person is generally followed up at regular intervals to detect recurrence and monitor for "secondary malignancy" (an uncommon side-effect of some chemotherapy and radiotherapy regimens—the appearance of another form of cancer). In the follow-up, which should be done at pre-determined regular intervals, general anamnesis is combined with complete blood count and determination of lactate dehydrogenase or thymidine kinase in serum.
Based on a survey of >800, surgical removal of the entire involved kidney plus the peri-renal fat appeared curative for the majority of all types of mesoblastic nephroma; the patient overall survival rate was 94%. Of the 4% of non-survivors, half were due to surgical or chemotherapeutic treatments. Another 4% of these patients suffered relapses, primarily in the local area of surgery rare cases of relapse due to lung or bone metastasis.. About 60% of these recurrent cases had a complete remission following further treatment. Recurrent disease was treated with a second surgery, radiation, and/or chemotherapy that often vincristine and actinomycin treatment. Removal of the entire afflicted kidney plus the peri-renal fat appears critical to avoiding local recurrences. In general, patients who were older than 3 months of age at diagnosis or had the cellular form of the disease, stage III disease, or involvement of renal lymph nodes had a higher recurrence rate. Among patients with these risk factors, only those with lymph node involvement are recommended for further therapy.
It has been suggested that mesoblastic nephroma patients with lymph node involvement or recurrent disease might benefit by adding the ALK inhibitor, crizotinib, or a tyrosine kinase inhibitor, either larotrectinib or entrectinib, to surgical, radiation, and/or chemotherapy treatment regimens. These drugs inhibit NTRK3's tyrosine kinase activity. Crizotinib has proven useful in treating certain cases of acute lymphoblastic leukemia that are associated with the "ETV6-NTRK3" fusion gene while larotrectinib and entrectinib have been useful in treating various cancers (e.g. a metastatic sarcoma, papillary thyroid cancer, non-small-cell lung carcinoma, gastrointestinal stromal tumor, mammary analog secretory carcinoma, and colorectal cancer) that are driven by mutated, overly active tyrosine kinases. Relevant to this issue, a 16-month-old girl with infantile fibrosarcoma harboring the "ETV6–NTRK3" fusion gene was successfully trated with larotrectinib. The success of these drugs, howwever, will likely depend on the relative malignancy-promoting roles of ETV6-NTRK3 protein's tyrosine kinase activity, the lose of ETV6-related transcription activity accompanying formation of ETV6-NTRK3 protein, and the various trisomy chromosomes that populate mesoblastic nephroma.
Immunoglobulin E (IgE) is important in mast cell function. Immunotherapy with anti-IgE immunoglobulin raised in sheep resulted in a transient decrease in the numbers of circulating mast cells in one patient with mast cell leukemia. Although splenectomy has led to brief responses in patients with mast cell leukemia, no firm conclusions as to the efficacy of this treatment are possible. Chemotherapy with combination of cytosine arabinoside and either idarubicin, daunomycin, or mitoxantrone as for acute myeloid leukemia has been used. Stem cell transplantation is an option, although no experience exists concerning responses and outcome.
For treatment purposes, MCACL has been traditionally considered a non-small cell lung carcinoma (NSCLC). Complete radical surgical resection is the treatment of choice.
There is virtually no data regarding new molecular targets or targeted therapy in the literature to date. Iwasaki and co-workers failed to find mutations of the epidermal growth factor receptor (EGFR) or the cellular Kirsten rat sarcoma virus oncogene "K-ras" in one reported case.
As the condition is quite rare, opinions among experts about how to treat OKCs differ.
Treatment options:
- Wide (local) surgical excision.
- Marsupialization - the surgical opening of the (OKC) cavity and a creation of a marsupial-like pouch, so that the cavity is in contact with the outside for an extended period, e.g. three months.
- Curettage (simple excision & scrape-out of cavity).
- Peripheral ostectomy after curettage and/or enucleation.
- Simple excision.
- Carnoy's solution - usually used in conjunction with excision.
- Enucleation and cryotherapy
CHOP frequently induces remission initially, but most patients relapse and die within two years. Autologous bone marrow transplantation is currently being investigated in the treatment of hepatosplenic lymphoma. Allogeneic bone marrow transplant has been proven to attain remission for over five years and possibly cure hepatosplenic lymphoma.
Complete surgical excision is the treatment of choice, associated with an excellent long term clinical outcome.
Treatment options vary and depend on the type and stage of cancer. Common treatments include surgery, chemotherapy, radiation therapy, amputation, and immunotherapy. A combination of therapies may be used. Knowledge and treatment of cancer have increased significantly in the past three decades. Survival rates have also increased due to the increase prevalence of canine cancer treatment centers and breakthroughs in targeted drug development. Canine cancer treatment has become an accepted clinical practice and access to treatment for owners has widely expanded recently. Cancer-targeting drugs most commonly function to inhibit excessive cell proliferation by attacking the replicating cells. However, there is still a prevalent pharmacy gap in veterinary oncology.
There is one canine tumor vaccine approved by the USDA, for preventing canine melanoma. The Oncept vaccine activates T-cell responses and antibodies against tumor-specific tyrosinase proteins. There is limited information about canine tumor antigens, which is the reason for the lack of tumor-specific vaccines and immunotherapy treatment plans for dogs.
Success of treatment depends on the form and extent of the cancer and the aggressiveness of the therapy. Early detection offers the best chance for successful treatment. The heterogeneity of tumors makes drug development increasingly complex, especially as new causes are discovered. No cure for cancer in canines exist.
Some dog owners opt for no treatment of the cancer at all, in which case palliative care, including pain relief, may be offered. Regardless of how treatment proceeds following a diagnosis, the quality of life of the pet is an important consideration. In cases where the cancer is not curable, there are still many things which can be done to alleviate the dog's pain. Good nutrition and care from the dog's owner can greatly enhance quality of life.
There is currently no cure for mastocytosis, but there are a number of medicines to help treat the symptoms:
- Antihistamines block receptors targeted by histamine released from mast cells. Both H and H blockers may be helpful.
- Leukotriene antagonists block receptors targeted by leukotrienes released from mast cells.
- Mast cell stabilizers help prevent mast cells from releasing their chemical contents. Cromoglicic acid is the only medicine specifically approved by the FDA for the treatment of mastocytosis. Ketotifen is available in Canada and Europe, but is only available in the U.S. as eyedrops (Zaditor).
- Proton pump inhibitors help reduce production of gastric acid, which is often increased in patients with mastocytosis. Excess gastric acid can harm the stomach, esophagus, and small intestine.
- Epinephrine constricts blood vessels and opens airways to maintain adequate circulation and ventilation when excessive mast cell degranulation has caused anaphylaxis.
- Salbutamol and other beta-2 agonists open airways that can constrict in the presence of histamine.
- Corticosteroids can be used topically, inhaled, or systemically to reduce inflammation associated with mastocytosis.
Antidepressants are an important and often overlooked tool in the treatment of mastocytosis. Depression and other neurological symptoms have been noted in mastocytosis. Some antidepressants, such as doxepin, are themselves potent antihistamines and can help relieve physical as well as cognitive symptoms.
Calcium channel blockers of the dihydropyridine type are sometimes used to treat high blood pressure. At least one clinical study suggested nifedipine, one of the dihydropyridines, may reduce mast cell degranulation in patients who exhibit "urticaria pigmentosa". A 1984 study by Fairly et al. included a patient with symptomatic "urticaria pigmentosa" who responded to nifedipine. However, nifedipine has not been approved by the FDA for treatment of mastocytosis.
In rare cases in which mastocytosis is cancerous or associated with a blood disorder, the patient may have to use steroids and/or chemotherapy. The agent imatinib (Glivec or Gleevec) has been found to be effective in certain types of mastocytosis.
The laboratory AB Science filed a new drug application for its molecule masitinib at the EMA, as its clinical trials are progressing. In spite of the refusal of the EMA, AB Science decided to restart its clinical trial.
There are clinical trials currently underway testing stem cell transplants as a form of treatment.
A mastocytoma or mast cell tumor is a type of round-cell tumor consisting of mast cells. It is found in humans and many animal species; in human medicine it also can refer to an accumulation or nodule of mast cells that resembles a tumor.
Mast cells originate from the bone marrow and are normally found throughout the connective tissue of the body as normal components of the immune system. As they release histamine, they are associated with allergic reactions. Mast cells also respond to tissue trauma. Mast cell granules contain histamine, heparin, platelet-activating factor, and other substances. Disseminated mastocytosis is rarely seen in young dogs and cats, while mast cell tumors are usually skin tumors in older dogs and cats. Although not always malignant, they do have the potential to be. Up to 25 percent of skin tumors in dogs are mast cell tumors, with a similar number in cats.
Acute mast cell leukemia is extremely aggressive and has a grave prognosis. In most cases, multi-organ failure including bone marrow failure develops over weeks to months. Median survival after diagnosis is only about 6 months.
Mast cell sarcoma is an extremely aggressive form of sarcoma made up of neoplastic mast cells. A sarcoma is a tumor made of cells from connective tissue. Mast cell sarcoma is an extremely rare tumor. Only 3 cases are reported so far. Prognosis is extremely poor. People with a mast cell sarcoma have no skin lesions, and pathology examination of the tumor shows it to be very malignant with an aggressive growth pattern. Mast cell sarcoma should not be confused with
extracutaneous mastocytoma, a rare benign mast cell tumor without destructive growth. In the cases observed, mast cell sarcoma terminated quickly as mast cell leukemia; one of the most aggressive human cancers.
Treatments used to combat autoimmune diseases and conditions caused by eosinophils include:
- corticosteroids – promote apoptosis. Numbers of eosinophils in blood are rapidly reduced
- monoclonal antibody therapy – e.g., mepolizumab or reslizumab against IL-5, prevents eosinophilopoiesis
- antagonists of leukotriene synthesis or receptors
- imatinib (STI571) – inhibits PDGF-BB in hypereosinophilic leukemia
Monoclonal antibodies such as dupilumab and lebrikizumab target IL-13 and its receptor, which reduces eosinophilic inflammation in pateints with asthma due to lowering the number of adhesion molecules present for eosinophils to bind to, thereby decreasing inflammation. Mepolizumab and benralizumab are other treatment options that target the alpha subunit of the IL-5 receptor, thereby inhibiting its function and reducing the number of developing eosinophils as well as the number of eosinophils leading to inflammation through antibody-dependent cell-mediated cytotoxicity and eosinophilic apoptosis.
There are no permanent cures for urticaria pigmentosa. However, treatments are possible. Most treatments for mastocytosis can be used to treat urticaria pigmentosa. Many common anti-allergy medications are useful because they reduce the mast cell's ability to react to histamine.
At least one clinical study suggested that nifedipine, a calcium channel blocker used to treat high blood pressure, may reduce mast cell degranulation in patients with urticaria pigmentosa. A 1984 study by Fairly et al. included a patient with symptomatic urticaria pigmentosa who responded to nifedipine at dose of 10 mg po tid. However, nifedipine has never been approved by the FDA for treatment of urticaria pigmentosa.
Another mast cell stabilizer Gastrocrom, a form of cromoglicic acid has also been used to reduce mast cell degranulation.
Since this lesion is usually a complication of long standing otitis media, it is important to use an appropriate antibiotic therapy regimen. If the patient fails first line antibiotics, then second-line therapies should be employed, especially after appropriate culture and sensitivity testing. Surgery may be required if there is extension into the mastoid bone, or if a concurrent cholesteatoma is identified during surgery or biopsy. In general, patients have an excellent outcome after appropriate therapy.
There are no specific radiological tests for SCTC verification. However these tests might be useful for identification of tumor borders and in planning of surgery.
Treatment is directed toward the underlying cause. However, in primary eosinophilia, or if the eosinophil count must be lowered, corticosteroids such as prednisone may be used. However, immune suppression, the mechanism of action of corticosteroids, can be fatal in patients with parasitosis.
Most patients with "ETV6-ACSL6"-related disease present with findings similar to eosinophilia, hypereosinophila, or chronic eosinophilic leukemia; at least 4 cases presented with eosinophilia plus findings of the red blood cell neoplasm, polycythemia vera; three cases resembled acute myelogenous leukemia; and one case presented with findings of a combined Myelodysplastic syndrome/myeloproliferative neoplasm. Best treatments for "ETV6-ACSL6"-related disease are unclear. Patients with the polycythemia vera form of the disease have been treated by reducing the circulating red blood cell load by phlebotomy or suppressing red blood cell formation using hydroxyurea. Individual case studies report that "ETV6-ACSL6"-associated disease is insensitive to tyrosine kinase inhibitors. Best treatment currently available, therefore, may involve chemotherapy and bone marrow transplantion.
The goal of radiation therapy is to kill tumor cells while leaving normal brain tissue unharmed. In standard external beam radiation therapy, multiple treatments of standard-dose "fractions" of radiation are applied to the brain. This process is repeated for a total of 10 to 30 treatments, depending on the type of tumor. This additional treatment provides some patients with improved outcomes and longer survival rates.
Radiosurgery is a treatment method that uses computerized calculations to focus radiation at the site of the tumor while minimizing the radiation dose to the surrounding brain. Radiosurgery may be an adjunct to other treatments, or it may represent the primary treatment technique for some tumors. Forms used include stereotactic radiosurgery, such as Gamma knife, Cyberknife or Novalis Tx radiosurgery.
Radiotherapy may be used following, or in some cases in place of, resection of the tumor. Forms of radiotherapy used for brain cancer include external beam radiation therapy, the most common, and brachytherapy and proton therapy, the last especially used for children.
Radiotherapy is the most common treatment for secondary brain tumors. The amount of radiotherapy depends on the size of the area of the brain affected by cancer. Conventional external beam "whole-brain radiotherapy treatment" (WBRT) or "whole-brain irradiation" may be suggested if there is a risk that other secondary tumors will develop in the future. Stereotactic radiotherapy is usually recommended in cases involving fewer than three small secondary brain tumors.
People who receive stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT) for the treatment of metastatic brain tumors have more than twice the risk of developing learning and memory problems than those treated with SRS alone.
Patients undergoing chemotherapy are administered drugs designed to kill tumor cells. Although chemotherapy may improve overall survival in patients with the most malignant primary brain tumors, it does so in only about 20 percent of patients. Chemotherapy is often used in young children instead of radiation, as radiation may have negative effects on the developing brain. The decision to prescribe this treatment is based on a patient's overall health, type of tumor, and extent of the cancer. The toxicity and many side effects of the drugs, and the uncertain outcome of chemotherapy in brain tumors puts this treatment further down the line of treatment options with surgery and radiation therapy preferred.
UCLA Neuro-Oncology publishes real-time survival data for patients with a diagnosis of glioblastoma multiforme. They are the only institution in the United States that displays how brain tumor patients are performing on current therapies. They also show a listing of chemotherapy agents used to treat high-grade glioma tumors.
Surgical treatment remains the treatment of choice for cats and dogs diagnosed with intestinal tumors who are in otherwise good health.