Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Succinic acid has been used successfully to treat MELAS syndrome, and also Leighs disease. Patients are managed according to what areas of the body are affected at a particular time. Enzymes, amino acids, antioxidants and vitamins have been used.
Also the following supplements may help:
- CoQ10 has been helpful for some MELAS patients. Nicotinamide has been used because complex l accepts electrons from NADH and ultimately transfers electrons to CoQ10.
- Riboflavin has been reported to improve the function of a patient with complex l deficiency and the 3250T-C mutation.
- The administration of L-arginine during the acute and interictal periods may represent a potential new therapy for this syndrome to reduce brain damage due to impairment of vasodilation in intracerebral arteries due to nitric oxide depletion.
- There is also a case report where succinate was successfully used to treat uncontrolled convulsions in MELAS patients, although this treatment modality is yet to be thoroughly investigated or widely recommended.
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
Like many mitochondrial diseases, there is no cure for MERRF, no matter the means for diagnosis of the disease. The treatment is primarily symptomatic. High doses of Coenzyme Q10, B complex vitamins and L-Carnitine are the drugs that patients are treated with in order to account for the altered metabolic processed resulting in the disease. There is very little success with these treatments as therapies in hopes of improving mitochondrial function. The treatment only alleviates symptoms and these do not prevent the disease from progressing. Patients with concomitant disease, such as diabetes, deafness or cardiac disease, are treated in combination to manage symptoms.
Although research is ongoing, treatment options are currently limited; vitamins are frequently prescribed, though the evidence for their effectiveness is limited.
Pyruvate has been proposed in 2007 as a treatment option. N-acetyl cysteine reverses many models of mitochondrial dysfunction.. In the case of mood disorders, specifically bipolar disorder, it is hypothesized that N-acetyl-cysteine (NAC), acetyl-L-carnitine (ALCAR), S-adenosylmethionine (SAMe), coenzyme Q10 (CoQ10), alpha-lipoic acid (ALA), creatine monohydrate (CM), and melatonin could be potential treatment options.
Baclofen (β-p-chlorophenyl-GABA) has some analgesic properties and has been traditionally used for spasticity. Its pharmacological effects primarily take place via presynaptic GABA receptors in the spinal cord, simultaneously releasing excitatory neurotransmitters onto motor neurons. Because the number and function of GABA receptors has been shown to progressively diminish in Aldh5a1-/- mice, such a therapy may prove to be useful. However, no data on the efficacy of baclofen on Aldh5a1-/- mice or human patients has been reported.
NARP syndrome is not curable. Symptomatic relief is targeted. Antioxidants play a role in improving the oxidative phosphorylation that is otherwise impaired.
Nucleoside bypass therapy is an experimental treatment aimed to restore the normal levels of deoxyribonucleotides (dNTPs) in mitochondria.
Currently there is no curative treatment for KSS. Because it is a rare condition, there are only case reports of treatments with very little data to support their effectiveness. Several promising discoveries have been reported which may support the discovery of new treatments with further research. Satellite cells are responsible for muscle fiber regeneration. It has been noted that mutant mtDNA is rare or undetectable in satellite cells cultured from patients with KSS. Shoubridge et al. (1997) asked the question whether wildtype mtDNA could be restored to muscle tissue by encouraging muscle regeneration. In the forementioned study, regenerating muscle fibers were sampled at the original biopsy site, and it was found that they were essentially homoplasmic for wildtype mtDNA. Perhaps with future techniques of promoting muscle cell regeneration and satellite cell proliferation, functional status in KSS patients could be greatly improved.
One study described a patient with KSS who had reduced serum levels of coenzyme Q10. Administration of 60–120 mg of Coenzyme Q10 for 3 months resulted in normalization of lactate and pyruvate levels, improvement of previously diagnosed first degree AV block, and improvement of ocular movements.
A screening ECG is recommended in all patients presenting with CPEO. In KSS, implantation of pacemaker is advised following the development of significant conduction disease, even in asymptomatic patients.
Screening for endocrinologic disorders should be performed, including measuring serum glucose levels, thyroid function tests, calcium and magnesium levels, and serum electrolyte levels. Hyperaldosteronism is seen in 3% of KSS patients.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
Due to neuroferritinopathy’s genetic etiology, the disorder is not currently curable. Furthermore, progression of the disorder is unable to be effectively halted. Therefore current treatment focuses on managing symptoms of the disorder.
No medication is available to treat all symptoms. Botox has been shown to help with focal dystonia. The dopamine depleter Tetrabenazine shown to help with involuntary movements. Symptoms affecting movement (dystonia) have also been treated with L-Dopa, orphenadrine, benzhexol, sulpiride, diazepam, clonazepam, and deanol. Parkinsonian symptoms were not decreased by L-Dopa. Iron supplements should be avoided.
There are no treatments for MDDS, but some of the symptoms can be managed. For survivors living with MDDS, there are drugs to control epilepsy, and physical therapy can help with muscle control. Liver transplants may benefit people with liver involvement.
Spindle transfer, where the nuclear DNA is transferred to another healthy egg cell leaving the defective mitochondrial DNA behind, is a potential treatment procedure that has been successfully carried out on monkeys. Using a similar pronuclear transfer technique, researchers at Newcastle University led by Douglass Turnbull successfully transplanted healthy DNA in human eggs from women with mitochondrial disease into the eggs of women donors who were unaffected. In such cases, ethical questions have been raised regarding biological motherhood, since the child receives genes and gene regulatory molecules from two different women. Using genetic engineering in attempts to produce babies free of mitochondrial disease is controversial in some circles and raises important ethical issues. A male baby was born in Mexico in 2016 from a mother with Leigh syndrome using spindle transfer.
In September 2012 a public consultation was launched in the UK to explore the ethical issues involved. Human genetic engineering was used on a small scale to allow infertile women with genetic defects in their mitochondria to have children.
In June 2013, the United Kingdom government agreed to develop legislation that would legalize the 'three-person IVF' procedure as a treatment to fix or eliminate mitochondrial diseases that are passed on from mother to child. The procedure could be offered from 29 October 2015 once regulations had been established.
Embryonic mitochondrial transplant and protofection have been proposed as a possible treatment for inherited mitochondrial disease, and allotopic expression of mitochondrial proteins as a radical treatment for mtDNA mutation load.
Currently, human clinical trials are underway at GenSight Biologics (ClinicalTrials.gov # NCT02064569) and the University of Miami (ClinicalTrials.gov # NCT02161380) to examine the safety and efficacy of mitochondrial gene therapy in Leber's hereditary optic neuropathy.
The treatment of genetic disorders is an ongoing battle with over 1800 gene therapy clinical trials having been completed, are ongoing, or have been approved worldwide. Despite this, most treatment options revolve around treating the symptoms of the disorders in an attempt to improve patient quality of life.
Gene therapy refers to a form of treatment where a healthy gene is introduced to a patient. This should alleviate the defect caused by a faulty gene or slow the progression of disease. A major obstacle has been the delivery of genes to the appropriate cell, tissue, and organ affected by the disorder. How does one introduce a gene into the potentially trillions of cells which carry the defective copy? This question has been the roadblock between understanding the genetic disorder and correcting the genetic disorder.
Direct treatment that stimulates the pyruvate dehydrogenase complex (PDC), provides alternative fuels, and prevents acute worsening of the syndrome. However, some correction of acidosis does not reverse all the symptoms. CNS damage is common and limits a full recovery. Ketogenic diets, with high fat and low carbohydrate intake have been used to control or minimize lactic acidosis and anecdotal evidence shows successful control of the disease, slowing progress and often showing rapid improvement. No study has yet been published demonstrating the effectiveness of the ketogenic diet for treatment of PDCD.
There is some evidence that dichloroacetate reduces the inhibitory phosphorylation of pyruvate dehydrogenase complex and thereby activates any residual functioning complex. Resolution of lactic acidosis is observed in patients with E1 alpha enzyme subunit mutations that reduce enzyme stability. However, treatment with dichloroacetate does not improve neurological damage. Oral citrate is often used to treat acidosis.
Succinic acid has been studied, and shown effective for both Leighs disease, and MELAS syndrome. If the mutation is in succinate dehydrogenase then there is a build up of succinate, in which case succinic acid won't work so the treatment is with fumaric acid to replace the fumarate than can not be made from succinate. A high-fat, low-carbohydrate diet may be followed if a gene on the X chromosome is implicated in an individual's Leigh syndrome. Thiamine (vitamin B) may be given if a deficiency of pyruvate dehydrogenase is known or suspected. The symptoms of lactic acidosis are treated by supplementing the diet with sodium bicarbonate (baking soda) or sodium citrate, but these substances do not treat the cause of Leigh syndrome. Dichloroacetate may also be effective in treating Leigh syndrome-associated lactic acidosis; research is ongoing on this substance. Coenzyme Q10 supplements have been seen to improve symptoms in some cases.
Clinical trials of the drug EPI-743 for Leigh disease are ongoing.
In 2016, John Zhang and his team at New Hope Fertility Center in New York, USA, performed a spindle transfer mitochondrial donation technique on a mother in Mexico who was at risk of producing a baby with Leigh disease. A healthy boy was born on 6 April 2016. However, it is not yet certain if the technique is completely reliable and safe.
Currently, the most common form of treatment for SLOS involves dietary cholesterol supplementation. Anecdotal reports indicate that this has some benefits; it may result in increased growth, lower irritability, improved sociability, less self-injurious behaviour, less tactile defensiveness, fewer infections, more muscle tone, less photosensitivity and fewer autistic behaviours. Cholesterol supplementation begins at a dose of 40–50 mg/kg/day, increasing as needed. It is administered either through consuming foods high in cholesterol (eggs, cream, liver), or as purified food grade cholesterol. Younger children and infants may require tube feeding. However, dietary cholesterol does not reduce the levels of 7DHC, cannot cross the blood–brain barrier, and does not appear to improve developmental outcomes. One empirical study found that cholesterol supplementation did not improve developmental delay, regardless of the age at which it began. This is likely because most developmental delays stem from malformations of the brain, which dietary cholesterol cannot ameliorate due to its inability to cross the blood–brain barrier.
Medical Care
- Treatment may be provided on an outpatient basis.
- Cataracts that do not regress or disappear with therapy may require hospitalization for surgical removal.
Surgical Care
- Cataracts may require surgical removal.
Consultations
- Biochemical geneticist
- Nutritionist
- Ophthalmologist
Diet
- Diet is the foundation of therapy. Elimination of lactose and galactose sources suffices for definitive therapy.
Activity
- No restriction is necessary.
(Roth MD, Karl S. 2009)
Treatments include discontinuation of protein intake, intravenous infusion of glucose and, as needed, infusion of supplemental arginine and the ammonia removal drugs, sodium phenylacetate and sodium benzoate.
HMG-CoA reductase inhibitors have been examined as treatment for SLOS. Given that this catalyzes the rate-limiting step in cholesterol synthesis, inhibiting it would reduce the buildup of toxic metabolites such as 7DHC. Simvastatin is a known inhibitor of HMG-CoA reductase, and most importantly is able to cross the blood–brain barrier. It has been reported to decrease the levels of 7DHC, as well as increase the levels of cholesterol. The increased cholesterol levels are due to simvastatin's effect on the expression of different genes. Simvastatin increases the expression of "DHCR7", likely leading to increased activity of DHCR7. It has also been shown to increase the expression of other genes involved in cholesterol synthesis and uptake. However, these benefits are dependent on the amount of residual cholesterol synthesis. Because some individuals possess less severe mutations and demonstrate some amount of DCHR7 activity, these people benefit the most from simvastatin therapy as they still have a partially functioning enzyme. For individuals that show no residual DCHR7 activity, such as those homozygous for null alleles or mutations, simvastatin therapy may actually be toxic. This highlights the importance of identifying the specific genotype of the SLOS patient before administering treatment. It is still unknown if simvastatin will improve the behavioural or learning deficits in SLOS.
There is no known curative treatment presently. Hearing aids and cataract surgery may be of use. Control of seizures, heart failure and treatment of infection is important. Tube feeding may be needed.
Although no cure currently exists, there is hope in treatment for this class of hereditary diseases with the use of an embryonic mitochondrial transplant.
The severity and prognosis vary with the type of mutation involved.
The most common drug used to treat AHC is flunarizine. Flunarizine functions by acting as a calcium channel blocker. Other drugs, in order of frequency of use are benzodiazepines, carbamazapine, barbiturates, and valproic acid. Flunarizine is prescribed for the purpose of reducing the severity of AHC attacks and the number of episodes, though it rarely stops attacks altogether. Minimizing the attacks may help reduce damage to the body from hemiplegic attacks and improve long-term outcomes as far as mental and physical disabilities are concerned.
Experts differ in their confidence in flunarizine's effectiveness. Some studies have found it to be very effective in reducing the duration, severity, and frequency of hemiplegic attacks. It is generally considered the best treatment available, but this drug is thought by some to be of little benefit to AHC patients. Many patients suffer adverse effects without seeing any improvement. Flunarizine also causes problems because it is difficult for patients to obtain, as it is not readily available in the United States.
Not all genetic disorders directly result in death, however there are no known cures for genetic disorders. Many genetic disorders affect stages of development such as Down syndrome. While others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.
Idebenone is a short-chain benzoquinone that interacts with the mitochondrial electron transport chain to enhance cellular respiration. When used in individuals with LHON, it is believed to allow electrons to bypass the dysfunctional complex I. Successful treatment using idebenone was initially reported in a small number of patients.
Two large-scale studies have demonstrated the benefits of idebenone. The Rescue of Hereditary Optic Disease Outpatient Study (RHODOS) evaluated the effects of idebenone in 85 patients with LHON who had lost vision within the prior five years. In this study, the group taking idebenone 900 mg per day for 24 weeks showed a slight improvement in visual acuity compared to the placebo group, though this difference was not statistically significant. Importantly, however, patients taking idebenone were protected from further vision loss, whereas the placebo group had a steady decline in visual acuity. Further, individuals taking idebenone demonstrated preservation of color vision and persistence of the effects of idebenone 30 months after discontinuing therapy. A retrospective analysis of 103 LHON patients by Carelli et al. builds upon these results. This study highlighted that 44 subjects who were treated with idebenone within one year of onset of vision loss had better outcomes, and, further, that these improvements with idebenone persisted for years.
Idebenone, combined with avoidance of smoke and limitation of alcohol intake, is the preferred standard treatment protocol for patients affected by LHON. Idebenone doses are prescribed to be taken spaced out throughout the day, rather than all at one time. For example, to achieve a dose of 900 mg per day, patients take 300 mg three times daily with meals. Idebenone is fat soluble, and may be taken with a moderate amount of dietary fat in each meal to promote absorption. It is recommended that patients on idebenone also take vitamin C 500 mg daily to keep idebenone in its reduced form, as it is most active in this state.