Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The World Health Organization recommends that women with severe hypertension during pregnancy should receive treatment with anti-hypertensive agents. Severe hypertension is generally considered systolic BP of at least 160 or diastolic BP of at least 110. Evidence does not support the use of one anti-hypertensive over another. The choice of which agent to use should be based on the prescribing clinician's experience with a particular agent, its cost, and its availability. Diuretics are not recommended for prevention of preeclampsia and its complications. Labetolol, Hydralazine and Nifedipine are commonly used antihypertensive agents for hypertension in pregnancy. ACE inhibitors and angiotensin receptor blockers are contraindicated as they affect fetal development.
The goal of treatment of severe hypertension in pregnancy is to prevent cardiovascular, kidney, and cerebrovascular complications. The target blood pressure has been proposed to be 140–160 mmHg systolic and 90–105 mmHg diastolic, although values are variable.
The intrapartum and postpartum administration of magnesium sulfate is recommended in severe pre-eclampsia for the prevention of eclampsia. Further, magnesium sulfate is recommended for the treatment of eclampsia over other anticonvulsants. Magnesium sulfate acts by interacting with NMDA receptors.
The agents of choice for blood pressure control during eclampsia are hydralazine and/or labetalol. This is because of their effectiveness, lack of negative effects on the fetus, and mechanism of action.
If the baby has not yet been delivered, steps need to be taken to stabilize the woman and deliver her speedily. This needs to be done even if the baby is immature, as the eclamptic condition is unsafe for both baby and mother. As eclampsia is a manifestation of a multiorgan failure, other organs (liver, kidney, lungs, cardiovascular system, and coagulation system) need to be assessed in preparation for a delivery (often a caesarean section), unless the woman is already in advanced labor. Regional anesthesia for caesarean section is contraindicated when a coagulopathy has developed.
Blood pressure control can be accomplished before pregnancy. Medications can control blood pressure. Certain medications may not be ideal for blood pressure control during pregnancy such as angiotensin-converting enzyme (ACE) inhibitors and Angiotensin II (AII) receptor antagonists. Controlling weight gain during pregnancy can help reduce the risk of hypertension during pregnancy.
There is no specific treatment, but is monitored closely to rapidly identify pre-eclampsia and its life-threatening complications (HELLP syndrome and eclampsia).
Drug treatment options are limited, as many antihypertensives may negatively affect the fetus. Methyldopa, hydralazine, and labetalol are most commonly used for severe pregnancy hypertension.
The fetus is at increased risk for a variety of life-threatening conditions, including pulmonary hypoplasia (immature lungs). If the dangerous complications appear after the fetus has reached a point of viability, even though still immature, then an early delivery may be warranted to save the lives of both mother and baby. An appropriate plan for labor and delivery includes selection of a hospital with provisions for advanced life support of newborn babies.
The effects of high blood pressure during pregnancy vary depending on the disorder and other factors. Preeclampsia does not in general increase a woman's risk for developing chronic hypertension or other heart-related problems. Women with normal blood pressure who develop preeclampsia after the 20th week of their first pregnancy, short-term complications--including increased blood pressure--usually go away within about 6 weeks after delivery.
Some women, however, may be more likely to develop high blood pressure or other heart disease later in life. More research is needed to determine the long-term health effects of hypertensive disorders in pregnancy and to develop better methods for identifying, diagnosing, and treating women at risk for these conditions.
Even though high blood pressure and related disorders during pregnancy can be serious, most women with high blood pressure and those who develop preeclampsia have successful pregnancies. Obtaining early and regular prenatal care is the most important thing you can do for you and your baby.
A number of medications may be useful to delay delivery including: NSAIDs, calcium channel blockers, beta mimetics, and atosiban. Tocolysis rarely delays delivery beyond 24–48 hours. This delay however may be sufficient to allow the pregnant woman to be transferred to a center specialized for management of preterm deliveries and give administered corticosteroids to reduce neonatal organ immaturity. Meta-analyses indicate that calcium-channel blockers and an oxytocin antagonist can delay delivery by 2–7 days, and β2-agonist drugs delay by 48 hours but carry more side effects. Magnesium sulfate does not appear to be useful and may be harmful when used for this purpose.
Bed rest has not been found to improve outcomes and therefore is not typically recommended.
Mothers whose fetus is diagnosed with intrauterine growth restriction by ultrasound can use management strategies based on monitoring and delivery methods. One of these monitoring techniques is an umbilical artery Doppler. This method has been shown to decrease risk of morbidity and mortality before and after parturition among IUGR patients.
Time of delivery is also a management strategy and is based on parameters collected from the umbilical artery doppler. Some of these include: pulsatility index, resistance index, and end-diastolic velocities, which are measurements of the fetal circulation.
The routine administration of antibiotics to all women with threatened preterm labor reduces the risk of the baby to get infected with group B streptococcus and has been shown to reduce related mortality rates.
When membranes rupture prematurely, obstetrical management looks for development of labor and signs of infection. Prophylactic antibiotic administration has been shown to prolong pregnancy and reduced neonatal morbidity with rupture of membranes at less than 34 weeks. Because of concern about necrotizing enterocolitis, amoxicillin or erythromycin has been recommended, but not amoxicillin + clavulanic acid (co-amoxiclav).
The only effective treatment is prompt delivery of the baby. Several medications have been investigated for the treatment of HELLP syndrome, but evidence is conflicting as to whether magnesium sulfate decreases the risk of seizures and progress to eclampsia. The disseminated intravascular coagulation is treated with fresh frozen plasma to replenish the coagulation proteins, and the anemia may require blood transfusion. In mild cases, corticosteroids and antihypertensives (labetalol, hydralazine, nifedipine) may be sufficient. Intravenous fluids are generally required. Hepatic hemorrhage can be treated with embolization, as well, if life-threatening bleeding ensues.
The University of Mississippi standard protocol for HELLP includes corticosteroids. However, a 2009 review found "no conclusive evidence" supporting corticosteroid therapy, and a 2010 systematic review by the Cochrane Collaboration also found "no clear evidence of any effect of corticosteroids on substantive clinical outcomes" either for the mothers or for the newborns,
Protamine reverses the effect of unfractionated heparin, but only partially binds to and reverses LMWH. A dose of 1 mg protamine / 100 IU LMWH reverses 90% of its anti-IIa and 60% of anti-Xa activity, but the clinical effect of the residual anti-Xa activity is not known. Both anti-IIa and anti-Xa activity may return up to three hours after protamine reversal, possibly due to release of additional LMWH from depot tissues.
Warfarin, heparin and LMWH do not seem to pass into breast milk, so these are not contraindicated in breastfeeding.
It is the goal of evolutionary medicine to find treatments for diseases that are informed by the evolutionary history of a disease. It has been suggested that gestational hypertension is linked to insulin resistance during pregnancy. Both the increase in blood sugar that can lead to gestational diabetes and the increase in blood pressure that can lead to gestational hypertension are mechanisms that mean to optimize the amount of nutrients that can be passed from maternal tissue to fetal tissue. It has been suggested that techniques used to combat insulin insensitivity might also prove beneficial to those suffering from gestational hypertension. Measures to avoid insulin resistance include avoiding obesity before pregnancy, minimizing weight gain during pregnancy, eating foods with low glycemic indexes, and exercising.
The first step in management of uterine atony is uterine massage. The next step is pharmacological therapies, the first of which is oxytocin, used because it initiates rhythmic contractions of the uterus, compressing the spiral arteries which should reduce bleeding. The next step in the pharmacological management is the use of methylergometrine, which is an ergot derivative, much like that use in the abortive treatment of migraines. Its side effect of hypertension means its use should not be used in those with hypertension or pre-eclampsia. In those with hypertension, the use of prostaglandin F is indicated (but beware of its use in patients with asthma).
Another option Carbetocin and Carboprost where Oxytocin and ergometrin is inappropriate.
Acute fatty liver of pregnancy is best treated in a centre with expertise in hepatology, high-risk obstetrics, maternal-fetal medicine and neonatology. The physicians who treat this condition will often consult with experts in liver transplantation in severe cases. Admission to the intensive care unit is recommended.
Initial treatment involves supportive management with intravenous fluids, intravenous glucose and blood products, including fresh frozen plasma and cryoprecipitate to correct DIC. The foetus should be monitored with cardiotocography. After the mother is stabilized, arrangements are usually made for delivery. This may occur vaginally, but, in cases of severe bleeding or compromise of the mother's status, a caesarian section may be needed. Often AFLP is not diagnosed until the mother and baby are in trouble, so it is most likely that an emergency C-section is needed.
The complications of acute fatty liver of pregnancy may require treatment after delivery, especially if pancreatitis occurs. Liver transplantation is rarely required for treatment of the condition, but may be needed for mothers with severe DIC, those with rupture of the liver, or those with severe encephalopathy.
The initial aim of treatment in hypertensive crises is to rapidly lower the diastolic pressure to about 100 to 105 mmHg; this goal should be achieved within two to six hours, with the maximum initial fall in BP not exceeding 25 percent of the presenting value. This level of BP control will allow gradual healing of the necrotizing vascular lesions. More aggressive hypotensive therapy is both unnecessary and may reduce the blood pressure below the autoregulatory range, possibly leading to ischemic events (such as stroke or coronary disease).
Once the BP is controlled, the person should be switched to medication by mouth, with the diastolic pressure being gradually reduced to 85 to 90 mmHg over two to three months. The initial reduction to a diastolic pressure of approximately 100 mmHg is often associated with a modest worsening of renal function; this change, however, is typically transient as the vascular disease tends to resolve and renal perfusion improves over one to three months. Antihypertensive therapy should not be withheld in this setting unless there has been an excessive reduction in BP. A change in medication, however, is indicated if the decline in renal function is temporally related to therapy with an angiotensin (ACE) converting enzyme inhibitor or angiotensin II receptor blocker, which can interfere with renal autoregulation and produce acute renal failure in patients with bilateral renal artery stenosis. (See "Renal effects of ACE inhibitors in hypertension".)
Several parenteral antihypertensive agents are most often used in the initial treatment of malignant hypertension.
- Nitroprusside – an arteriolar and venous dilator, given as an intravenous infusion. Nitroprusside acts within seconds and has a duration of action of only two to five minutes. Thus, hypotension can be easily reversed by temporarily discontinuing the infusion, providing an advantage over the drugs listed below. However, the potential for cyanide toxicity limits the prolonged use of nitroprusside, particularly in patients with renal insufficiency.
- Nicardipine – an arteriolar dilator, given as an intravenous infusion.
- Clevidipine – a short-acting dihydropyridine calcium channel blocker. It reduces blood pressure without affecting cardiac filling pressures or causing reflex tachycardia.
- Labetalol – an alpha- and beta-adrenergic blocker, given as an intravenous bolus or infusion. Bolus followed by infusion.
- Fenoldopam – a peripheral dopamine-1 receptor agonist, given as an intravenous infusion.
- Oral agents — A slower onset of action and an inability to control the degree of BP reduction has limited the use of oral antihypertensive agents in the therapy of hypertensive crises. They may, however, be useful when there is no rapid access to the parenteral medications described above. Both sublingual nifedipine and sublingual captopril can substantially lower the BP within 10 to 30 minutes in many patients. A more rapid response is seen when liquid nifedipine is swallowed.
The major risk with oral agents is ischemic symptoms (e.g., angina pectoris, myocardial infarction, or stroke) due to an excessive and uncontrolled hypotensive response. Thus, their use should generally be avoided in the treatment of hypertensive crises if more controllable drugs are available.
With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute renal failure, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women. Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age. In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby.
Low birthweight, pre-term birth and pre-eclampsia have been associated with maternal periodontitis exposure. But the strength of the observed associations is inconsistent and vary according to the population studied, the means of periodontal assessment and the periodontal disease classification employed. However the best is that the risk of low birth weight can be reduced with very simple therapy. Treatment of periodontal disease during gestation period is safe and reduction in inflammatory burden reduces the risk of preterm birth as well as low birth weight.
Ideally a woman who is known to have hyperthyroidism should seek pre-pregnancy advice, although as yet there is no evidence for its benefit. Appropriate education should allay fears that are commonly present in these women. She should be referred for specialist care for frequent checking of her thyroid status, thyroid antibody evaluation and close monitoring of her medication needs. Medical therapy with anti-thyroid medications is the treatment of choice for hyperthyroidism in pregnancy.Methimazole and propylthiouracil (PTU) are effective in preventing pregnancy complications by hyperthyroidism. Surgery is considered for patients who suffer severe adverse reactions to anti-thyroid drugs and this is best performed in the second trimester of pregnancy. Radioactive iodine is absolutely contraindicated in pregnancy and the puerperium. If a woman is already receiving carbimazole, a change to propylthiouracil (PTU) is recommended but this should be changed back to carbimazole after the first trimester. This is because carbimazole can rarely be associated with skin and also mid line defects in the fetus but PTU long term also can cause liver side effects in the adult. Carbimazole and PTU are both secreted in breast milk but evidence suggests that antithyroid drugs are safe during lactation. There are no adverse effects on IQ or psychomotor development in children whose mothers have received antithyroid drugs in pregnancy.
Current guidelines suggest that a pregnant patient should be on PTU during the first trimester of pregnancy due to lower tetragenic effect and then be switched to methimazole during the second and third trimester due to lower liver dysfunction side effects.
Treatment of infants suffering birth asphyxia by lowering the core body temperature is now known to be an effective therapy to reduce mortality and improve neurological outcome in survivors, and hypothermia therapy for neonatal encephalopathy begun within 6 hours of birth significantly increases the chance of normal survival in affected infants.
There has long been a debate over whether newborn infants with birth asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
In sheep, intrauterine growth restriction can be caused by heat stress in early to mid pregnancy. The effect is attributed to reduced placental development causing reduced fetal growth. Hormonal effects appear implicated in the reduced placental development. Although early reduction of placental development is not accompanied by concurrent reduction of fetal growth; it tends to limit fetal growth later in gestation. Normally, ovine placental mass increases until about day 70 of gestation, but high demand on the placenta for fetal growth occurs later. (For example, research results suggest that a normal average singleton Suffolk x Targhee sheep fetus has a mass of about 0.15 kg at day 70, and growth rates of about 31 g/day at day 80, 129 g/day at day 120 and 199 g/day at day 140 of gestation, reaching a mass of about 6.21 kg at day 140, a few days before parturition.)
In adolescent ewes (i.e. ewe hoggets), overfeeding during pregnancy can also cause intrauterine growth restriction, by altering nutrient partitioning between dam and conceptus. Fetal growth restriction in adolescent ewes overnourished during early to mid pregnancy is not avoided by switching to lower nutrient intake after day 90 of gestation; whereas such switching at day 50 does result in greater placental growth and enhanced pregnancy outcome. Practical implications include the importance of estimating a threshold for "overnutrition" in management of pregnant ewe hoggets. In a study of Romney and Coopworth ewe hoggets bred to Perendale rams, feeding to approximate a conceptus-free live mass gain of 0.15 kg/day (i.e. in addition to conceptus mass), commencing 13 days after the midpoint of a synchronized breeding period, yielded no reduction in lamb birth mass, where compared with feeding treatments yielding conceptus-free live mass gains of about 0 and 0.075 kg/day.
In both of the above models of IUGR in sheep, the absolute magnitude of uterine blood flow is reduced. Evidence of substantial reduction of placental glucose transport capacity has been observed in pregnant ewes that had been heat-stressed during placental development.
LBW is closely associated with fetal and Perinatal mortality and Morbidity, inhibited growth and cognitive development, and chronic diseases later in life. At the population level, the proportion of babies with a LBW is an indicator of a multifaceted public-health problem that includes long-term maternal malnutrition, ill health, hard work and poor health care in pregnancy. On an individual basis, LBW is an important predictor of newborn health and survival and is associated with higher risk of infant and childhood mortality.
Low birth weight constitutes as sixty to eighty percent of the infant mortality rate in developing countries. Infant mortality due to low birth weight is usually directly causal, stemming from other medical complications such as preterm birth, poor maternal nutritional status, lack of prenatal care, maternal sickness during pregnancy, and an unhygienic home environment. According to an analysis by University of Oregon, reduced brain volume in children is also tied to low birth-weight.
Ideally the management of abdominal pregnancy should be done by a team that has medical personnel from multiple specialties. Potential treatments consist of surgery with termination of the pregnancy (removal of the fetus) via laparoscopy or laparotomy, use of methotrexate, embolization, and combinations of these. Sapuri and Klufio indicate that conservative treatment is also possible if the following criteria are met: 1. there are no major congenital malformations; 2. the fetus is alive; 3. there is continuous hospitalization in a well-equipped and well-staffed maternity unit which has immediate blood transfusion facilities; 4. there is careful monitoring of maternal and fetal well being; and 5. placental implantation is in the lower abdomen away from the liver and spleen. The choice is largely dictated by the clinical situation. Generally, treatment is indicated when the diagnosis is made; however, the situation of the advanced abdominal pregnancy is more complicated.
Patients with hypertensive encephalopathy who are promptly treated usually recover without deficit. However, if treatment is not administered, the condition can lead to death.