Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most specific medicine to treat angina is nitroglycerin. It is a potent vasodilator that decreases myocardial oxygen demand by decreasing the heart's workload. Beta blockers and calcium channel blockers act to decrease the heart's workload, and thus its requirement for oxygen. Nitroglycerin should not be given if certain inhibitors such as sildenafil, tadalafil, or vardenafil have been taken within the previous 12 hours as the combination of the two could cause a serious drop in blood pressure. Treatments for angina are balloon angioplasty, in which the balloon is inserted at the end of a catheter and inflated to widen the arterial lumen. Stents to maintain the arterial widening are often used at the same time. Coronary bypass surgery involves bypassing constricted arteries with venous grafts. This is much more invasive than angioplasty.
The main goals of treatment in angina pectoris are relief of symptoms, slowing progression of the disease, and reduction of future events, especially heart attacks and death. Beta blockers (e.g., carvedilol, propranolol, atenolol) have a large body of evidence in morbidity and mortality benefits (fewer symptoms, less disability and longer life) and short-acting nitroglycerin medications have been used since 1879 for symptomatic relief of angina. Calcium channel blockers (such as nifedipine (Adalat) and amlodipine), isosorbide mononitrate and nicorandil are vasodilators commonly used in chronic stable angina. A new therapeutic class, called If inhibitor, has recently been made available: Ivabradine provides pure heart rate reduction leading to major anti-ischemic and antianginal efficacy. ACE inhibitors are also vasodilators with both symptomatic and prognostic benefit. Statins are the most frequently used lipid/cholesterol modifiers, which probably also stabilize existing atheromatous plaque. Low-dose aspirin decreases the risk of heart attack in patients with chronic stable angina, and was part of standard treatment. However, in patients without established cardiovascular disease, the increase in hemorrhagic stroke and gastrointestinal bleeding offsets any benefits and it is no longer advised unless the risk of myocardial infarction is very high.
Exercise is also a very good long-term treatment for the angina (but only particular regimens - gentle and sustained exercise rather than intense short bursts), probably working by complex mechanisms such as improving blood pressure and promoting coronary artery collateralisation.
Though sometimes used by patients, evidence does not support the use of Traditional Chinese Herbal Products (THCP) for angina
Identifying and treating risk factors for further coronary heart disease is a priority in patients with angina. This means testing for elevated cholesterol and other fats in the blood, diabetes and hypertension (high blood pressure), and encouraging smoking cessation and weight optimization.
The calcium channel blocker nifedipine prolongs cardiovascular event- and procedure-free survival in patients with coronary artery disease. New overt heart failures were reduced by 29% compared to placebo; however, the mortality rate difference between the two groups was statistically insignificant.
Aggressive risk factor modification is required for effective treatment of microvascular angina where exercise plays a major role. Several other treatment strategies including b-blockers, angiotensin-converting enzyme inhibitors, ranolazine, l-arginine, statin drugs and potentially estrogen replacement therapy have been shown to relieve anginal symptoms as well as improve vascular function. Nitrates may be effective for symptom relief. Further studies are required to determine whether specific treatments are associated with improved survival as well as decreased symptoms.
Prinzmetal's angina typically responds to nitrates and calcium channel blockers.
Use of a beta blocker such as propranolol is contraindicated in Prinzmetal's angina. Prazosin has also been found to be of value in some patients. Coronary revascularization is only useful when the patient shows concomitant coronary atherosclerosis on coronary angiogram.
Nitroglycerin can be used immediately to widen the coronary arteries and help increase blood flow to the heart. In addition, nitroglycerin causes peripheral venous and artery dilation reducing cardiac preload and afterload. These reductions allow for decreased stress on the heart and therefore lower the oxygen demand of the heart's muscle cells.
Antiplatelet drugs such as aspirin and clopidogrel can help reduce the progression of atherosclerotic plaque formation, as well as combining these with an anticoagulant such as a low molecular weight heparin.
Coronary ischemia can be treated but not cured.
By changing lifestyle, further blockages can be prevented. A change in lifestyle, mixed with prescribed medication, can improve health.
It is recommended that blood pressure typically be reduced to less than 140/90 mmHg. The diastolic blood pressure however should not be lower than 60 mmHg. Beta blockers are recommended first line for this use.
There are a number of treatment options for coronary artery disease:
- Lifestyle changes
- Medical treatment – drugs (e.g., cholesterol lowering medications, beta-blockers, nitroglycerin, calcium channel blockers, etc.);
- Coronary interventions as angioplasty and coronary stent;
- Coronary artery bypass grafting (CABG)
By increasing physical activity, it is possible to manage body weight, reduce blood pressure, and relieve stress.
The Center for Disease Control recommends 30 minutes of physical activity a day.
Instead of 30 minutes a day at one time, short bursts of physical activity for 8–10 minutes three times a day are also suitable. Exercising this way can reduce the risk of getting heart disease or coronary ischemia, if it is performed at moderate intensity.
The treatment of coronary artery ectasia is normally done in conjunction with therapies of other heart disorders such as atherosclerosis and hypertension. To prevent the formation of blood clots and the blockage of the vessels, patients are commonly placed on anticoagulant therapy (e.g. warfarin, and aspirin), as well as anti-spasm therapy of calcium channel blockers. Coronary artery ectasia also responds to statins and ACE inhibitors.
Many approaches have been promoted as methods to reduce or reverse atheroma progression:
- eating a diet of raw fruits, vegetables, nuts, beans, berries, and grains;
- consuming foods containing omega-3 fatty acids such as fish, fish-derived supplements, as well as flax seed oil, borage oil, and other non-animal-based oils;
- abdominal fat reduction;
- aerobic exercise;
- inhibitors of cholesterol synthesis (known as statins);
- low normal blood glucose levels (glycosylated hemoglobin, also called HbA1c);
- micronutrient (vitamins, potassium, and magnesium) consumption;
- maintaining normal, or healthy, blood pressure levels;
- aspirin supplement
- cyclodextrin can solubilize cholesterol, removing it from plaques
Put simply, take steps to live a healthy, sustainable lifestyle.
Restoring adequate blood flow to the heart muscle in people with heart failure and significant coronary artery disease is strongly associated with improved survival, some research showing up to 75% survival rates over 5 years. A stem cell study indicated that using autologous cardiac stem cells as a regenerative approach for the human heart (after a heart attack) has great potential.
American Heart Association practice guidelines indicate (ICD) implantable cardioverter-defibrillator use in those with ischemic cardiomyopathy (40 days post-MI) that are (NYHA) New York Heart Association functional class I. LVEF of >30% is often used to differentiate primary from ischemic cardiomyopathy, and a prognostic indicator. At the same time, people who undergo ventricular restoration on top of coronary artery bypass show improved postoperative ejection fraction as compared to those treated with only coronary artery bypass surgery. Severe cases are treated with heart transplantation.
Medical treatments often focus on alleviating symptoms. However measures which focus on decreasing underlying atherosclerosis—as opposed to simply treating symptoms—are more effective. Non-pharmaceutical means are usually the first method of treatment, such as stopping smoking and practicing regular exercise. If these methods do not work, medicines are usually the next step in treating cardiovascular diseases, and, with improvements, have increasingly become the most effective method over the long term.
The key to the more effective approaches is to combine multiple different treatment strategies. In addition, for those approaches, such as lipoprotein transport behaviors, which have been shown to produce the most success, adopting more aggressive combination treatment strategies taken on a daily basis and indefinitely has generally produced better results, both before and especially after people are symptomatic.
At present, there is no effective specific treatment available for diabetic cardiomyopathy. Treatment centers around intense glycemic control through diet, oral hypoglycemics and frequently insulin and management of heart failure symptoms. There is a clear correlation between increased glycemia and risk of developing diabetic cardiomyopathy, therefore, keeping glucose concentrations as controlled as possible is paramount. Thiazolidinediones are not recommended in patients with NYHA Class III or IV heart failure secondary to fluid retention.
As with most other heart diseases, ACE inhibitors can also be administered. An analysis of major clinical trials shows that diabetic patients with heart failure benefit from such a therapy to a similar degree as non-diabetics. Similarly, beta blockers are also common in the treatment of heart failure concurrently with ACE inhibitors.
Due to its rarity, no comprehensive treatment studies on eosinophilic myocarditis have been conducted. Small studies and case reports have directed efforts towards: a) supporting cardiac function by relieving heart failure and suppressing life-threatening abnormal heart rhythms; b) suppressing eosinophil-based cardiac inflammation; and c) treating the underlying disorder. In all cases of symptomatic eosinophilic myocarditis that lack specific treatment regimens for the underlying disorder, available studies recommend treating the inflammatory component of this disorder with non-specific immunosuppressive drugs, principally high-dosage followed by slowly-tapering to a low-dosage maintenance corticosteroid regimens. It is recommended that afflicted individuals who fail this regimen or present with cardiogenic shock be treated with other non-specific immunosuppressive drugs viz., azathioprine or cyclophosphamide, as adjuncts to, or replacements for, corticosteroids. However, individuals with an underlying therapeutically accessible disease should be treated for this disease; in seriously symptomatic cases, such individuals may be treated concurrently with a corticosteroid regimen. Examples of diseases underlying eosinophilic myocarditis that are recommended for treatments directed at the underlying disease include:
- Infectious agents: specific drug treatment of helminth and protozoan infections typically takes precedence over non-specific immunosuppressive therapy, which, if used without specific treatment, could worsen the infection. In moderate-to-severe cases, non-specific immunosuppression is used in combination with specific drug treatment.
- Toxic reactions to ingested agents: discontinuance of the ingested agent plus corticosteroids or other non-specific immunosuppressive regimens.
- Clonal eosinophilia caused by mutations in genes that are highly susceptible to tyrosine kinase inhibitors such as "PDGFRA", "PDGFRB", or possibly "FGFR1": first generation tyrosine kinase inhibitors (e.g. imatinib) are recommended for the former two mutations; a later generation tyrosine kinase inhibitors, ponatinib, alone or combined with bone marrow transplantation, may be useful for treating the FGFR1 mutations.
- Clonal hypereosinophilia due to mutations in other genes or primary malignancies: specific treatment regimens used for these pre-malignant or malignant diseases may be more useful and necessary than non-specific immunosuppression.
- Allergic and autoimmune diseases: non-specific treatment regimens used for these diseases may be useful in place of a simple corticosteroid regimen. For example, eosinophilic granulomatosis with polyangiitis can be successfully treated with mepolizumab.
- Idiopathic hypereosinphilic syndrome and lymphocyte-variant hypereosinophilia: corticosteroids; for individuals with these hypereosinophilias that are refractory to or break through corticosteroid therapy and individuals requiring corticosteroid-sparing therapy, recommended alternative drug therapies include hydroxyurea, Pegylated interferon-α, and either one of two tyrosine kinase inhibitors viz., imatinib and mepolizumab).
Changes in diet may help prevent the development of atherosclerosis. Tentative evidence suggests that a diet containing dairy products has no effect on or decreases the risk of cardiovascular disease.
A diet high in fruits and vegetables decreases the risk of cardiovascular disease and death. Evidence suggests that the Mediterranean diet may improve cardiovascular results. There is also evidence that a Mediterranean diet may be better than a low-fat diet in bringing about long-term changes to cardiovascular risk factors (e.g., lower cholesterol level and blood pressure).
Although Prinzmetal's angina has been documented in between 2% to 10% of angina patients, it can be overlooked by cardiologists who stop testing protocol after ruling out typical angina. Rarely, an ECG can capture diffuse ST elevations.
Patients who develop cardiac chest pain are generally treated empirically as an "acute coronary syndrome", and are generally tested for cardiac enzymes such as creatine kinase isoenzymes or troponin I or T. These may or may not show a degree of positivity, as coronary spasm too can cause myocardial damage or may leave the arteries undamaged. Echocardiography or thallium scintigraphy is often performed.
The gold standard is coronary angiography with injection of provocative agents into the coronary artery. Rarely, an active spasm can be documented angiographically (e.g. if the patient receives an angiogram with intent of performing a primary coronary intervention with angioplasty). Depending on the local protocol, provocation testing may involve substances such as ergonovine, methylergonovine or acetylcholine and hyperventilation. Exaggerated spasm is diagnostic of Prinzmetal angina.
Surgery for symptomatic myocardial bridge of the LAD may include myotomy, coronary artery bypass surgery, or both.
Procedure selection is based on the size of the underlying artery during diastole, the presence of concomitant proximal coronary artery disease, and the presence of anatomic factors that would increase the risk of myotomy. Surgical strategy for the management should be customized, and the treatment
of choice is myotomy but bypass surgery can be added
when there is proximal coronary obstruction or anatomic
anomalies that increase the risk of recurrence of the
obstruction.
Standard medical treatment consists of anticoagulants (blood thinners), diuretics, and oxygen. Lifelong anticoagulation is recommended, even after PEA. Routine inferior vena cava filter placement is not recommended.
In patients with non-operable CTEPH or persistent/recurrent PH after PEA, there is evidence for benefit from pulmonary vasodilator drug treatment. The microvascular disease component in CTEPH has provided the rationale for off-label use of drugs approved for PAH. Currently, only riociguat (a stimulator of soluble guanylate cyclase) is approved for treatment of adults with inoperable CTEPH or persistent or recurrent CTEPH after surgical treatment. Other drug trials are ongoing in patients with inoperable CTEPH, with macitentan recently proving efficacy and safety in MERIT
For patients in acute heart failure, ACE inhibitors, angiotensin receptor blockers, and beta blockers, are considered mainstays of heart failure treatment. But use of beta blockers specifically for takotsubo cardiomyopathy is controversial, because they may confer no benefit.
The treatment of takotsubo cardiomyopathy is generally supportive in nature, for it is considered a transient disorder. Treatment is dependent on whether patients experience heart failure or acute hypotension and shock. In many individuals, left ventricular function normalizes within two months. Aspirin and other heart drugs also appear to help in the treatment of this disease, even in extreme cases. After the patient has been diagnosed, and myocardial infarction (heart attack) ruled out, the aspirin regimen may be discontinued, and treatment becomes that of supporting the patient.
While medical treatments are important to address the acute symptoms of Takotsubo cardiomyopathy, further treatment includes lifestyle changes. It is important that the individual stay physically healthy while learning and maintaining methods to manage stress, and to cope with future difficult situations.
Although the symptoms of Takotsubo cardiomyopathy usually go away on their own and the condition completely resolves itself within a few weeks, some serious complications can happen that must be treated. These most commonly include congestive heart failure and very low blood pressure, and less commonly include blood clotting in the apex of the left ventricle, irregular heart beat, and tearing of the heart wall.
One of the most important features differentiating ischemic cardiomyopathy from the other forms of cardiomyopathy is the shortened, or worsened all-cause mortality in patients with ischemic cardiomyopathy. According to several studies, coronary artery bypass graft surgery has a survival advantage over medical therapy (for ischemic cardiomyopathy) across varied follow-ups.
After return of heart function, there has been a moderately higher risk of death in the hospital when compared to MI patients without PVF. Whether this still holds true with the recent changes in treatment strategies of earlier hospital admission and immediate angioplasty with thrombus removal is unknown. PVF does not affect the long-term prognosis.
Decision making for patients with CTEPH can be complex and needs to be managed by CTEPH teams in expert centres. CTEPH teams comprise cardiologists and pulmonologists with specialist PH training, radiologists, experienced PEA surgeons with a significant caseload of CTEPH patients per year and physicians with percutaneous interventional expertise. Currently, there are three recognised targeted treatment options available: pulmonary endarterectomy (PEA), balloon pulmonary angioplasty (BPA) and pulmonary vasodilator drug treatment for inoperable patients.
Specialist imaging using either magnetic resonance or invasive PA is necessary to determine risks and benefits of interventional treatment with PEA or BPA.
The main goals of treatment in distributive shock are to reverse the underlying cause and achieve hemodynamic stabilization. Immediate treatment involves fluid resuscitation and the use of vasoactive drugs, both vasopressors and inotropes. Hydrocortisone is used for patients whose hypotension does not respond to fluid resuscitation and vasopressors. Opening and keeping open the microcirculation is a consideration in the treatment of distributive shock, as a result limiting the use of vasopressors has been suggested. Control of inflammation, vascular function and coagulation to correct pathological differences in blood flow and microvascular shunting has been pointed to as a potentially important adjunct goal in the treatment of distributive shock.
Patients with septic shock are treated with antimicrobial drugs to treat the causative infection. Some sources of infection require surgical intervention including necrotizing fasciitis, cholangitis, abscess, intestinal ischemia, or infected medical devices.
Anaphylactic shock is treated with epinephrine.
The survival of PVF largely depends on the promptness of defibrillation. The success rate of prompt defibrillation during monitoring is currently higher than 95%. It is estimated that the success rate decreases by 10% for each additional minute of delay.