Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is currently no known pharmacological treatment to hereditary motor and sensory neuropathies. However, the majority of people with these diseases are able to walk and be self-sufficient. Some methods of relief for the disease include physical therapy, stretching, braces, and sometimes orthopedic surgery. Since foot disorders are common with neuropathy disorders precautions must be taken to strengthen these muscles and use preventative care and physical therapy to prevent injury and deformities.
A range of medications that act on the central nervous system has been found to be useful in managing neuropathic pain. Commonly used treatments include tricyclic antidepressants (such as nortriptyline or amitriptyline), the serotonin-norepinephrine reuptake inhibitor (SNRI) medication duloxetine, and antiepileptic therapies such as gabapentin, pregabalin, or sodium valproate. Few studies have examined whether nonsteroidal anti-inflammatory drugs are effective in treating peripheral neuropathy.
Symptomatic relief for the pain of peripheral neuropathy may be obtained by application of topical capsaicin. Capsaicin is the factor that causes heat in chili peppers. The evidence suggesting that capsaicin applied to the skin reduces pain for peripheral neuropathy is of moderate to low quality and should be interpreted carefully before using this treatment option. Local anesthesia often is used to counteract the initial discomfort of the capsaicin. Some current research in animal models has shown that depleting neurotrophin-3 may oppose the demyelination present in some peripheral neuropathies by increasing myelin formation.
High-quality evidence supports the use of cannabis for neuropathic pain.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
Transcutaneous electrical nerve stimulation therapy may be effective and safe in the treatment of diabetic peripheral neuropathy. A recent review of three trials involving 78 patients found some improvement in pain scores after 4 and 6, but not 12 weeks of treatment and an overall improvement in neuropathic symptoms at 12 weeks. Another review of four trials found significant improvement in pain and overall symptoms, with 38% of patients in one trial becoming asymptomatic. The treatment remains effective even after prolonged use, but symptoms return to baseline within a month of cessation of treatment.
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
No specific treatment is known that would prevent, slow, or reverse HSP. Available therapies mainly consist of symptomatic medical management and promoting physical and emotional well-being. Therapeutics offered to HSP patients include:
- Baclofen – a voluntary muscle relaxant to relax muscles and reduce tone. This can be administered orally or intrathecally. (Studies in HSP )
- Tizanidine – to treat nocturnal or intermittent spasms (studies available )
- Diazepam and clonazepam – to decrease intensity of spasms
- Oxybutynin chloride – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Tolterodine tartate – an involuntary muscle relaxant and spasmolytic agent, used to reduce spasticity of the bladder in patients with bladder control problems
- Botulinum toxin – to reduce muscle overactivity (existing studies for HSP patients)
- Antidepressants (such as selective serotonin re-uptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors) – for patients experiencing clinical depression
- Physical therapy – to restore and maintain the ability to move; to reduce muscle tone; to maintain or improve range of motion and mobility; to increase strength and coordination; to prevent complications, such as frozen joints, contractures, or bedsores.
In the treatment of polyneuropathies one must ascertain and manage the cause, among management activities are: weight decrease, use of a walking aid, and occupational therapist assistance. Additionally BP control in those with diabetes is helpful, while intravenous immunoglobulin is used for multifocal motor neuropathy.
According to Lopate, et al., methylprednisolone is a viable treatment for chronic inflammatory demyelinative polyneuropathy (which can also be treated with intravenous immunoglobulin) The author(s) also indicate that prednisone has greater adverse effects in such treatment, as opposed to intermittent (high-doses) of the aforementioned medication.
According to Wu, et al., in critical illness polyneuropathy supportive and preventive therapy are important for the affected individual, as well as, avoiding (or limiting) corticosteroids.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
There is no cure for MMA. Treatment consists of muscle strengthening exercises and training in hand coordination. It has been proposed that the changes in this disease are from compression of the spinal cord in flexion due to forward shifting of the posterior dural sac. There have been treatments studies ranging from use of a cervical collar to anterior cervical fusion and posterior decompression.
Often the most important goal for patients with CMT is to maintain movement, muscle strength, and flexibility. Therefore, an interprofessional team approach with occupational therapy, physical therapy, orthotist, podiatrist and or orthopedic surgeon is recommended. PT typically focuses on muscle strength training, muscle, and ligament stretching while OT can provide education on energy conservation strategies and moderate aerobic exercise in activities of daily living. Physical therapy should be involved in designing an exercise program that fits a person's personal strengths and flexibility. Bracing can also be used to correct problems caused by CMT. An orthotist may address gait abnormalities by prescribing the use of ankle-foot orthoses (AFOs). These orthoses help control foot drop and ankle instability and often provide a better sense of balance for patients. Appropriate footwear is also very important for people with CMT, but they often have difficulty finding well-fitting shoes because of their high arched feet and hammer toes. Due to the lack of good sensory reception in the feet, CMT patients may also need to see a podiatrist for help in trimming nails or removing calluses that develop on the pads of the feet. A final decision a patient can make is to have surgery. Using a podiatrist or an orthopedic surgeon, patients can choose to stabilize their feet or correct progressive problems. These procedures include straightening and pinning the toes, lowering the arch, and sometimes, fusing the ankle joint to provide stability. CMT patients must take extra care to avoid falling because fractures take longer to heal in someone with an underlying disease process. Additionally, the resulting inactivity may cause the CMT to worsen.
The Charcot-Marie-Tooth Association classifies the chemotherapy drug vincristine as a "definite high risk" and states that "vincristine has been proven hazardous and should be avoided by all CMT patients, including those with no symptoms."
There are also several corrective surgical procedures that can be done to improve physical condition.
TCAs include imipramine, amitriptyline, desipramine, and nortriptyline. They are generally regarded as first or second-line treatment for DPN. Of the TCAs, imipramine has been the best studied. These medications are effective at decreasing painful symptoms but suffer from multiple side effects that are dose-dependent. One notable side effect is cardiac toxicity, which can lead to fatal abnormal heart rhythms. Additional common side effects include dry mouth, difficulty sleeping, and sedation. At low dosages used for neuropathy, toxicity is rare, but if symptoms warrant higher doses, complications are more common. Among the TCAs, amitriptyline is most widely used for this condition, but desipramine and nortriptyline have fewer side effects.
Typical opioid medications, such as oxycodone, appear to be no more effective than placebo. In contrast, low-quality evidence supports a moderate benefit from the use of atypical opioids (e.g., tramadol and tapentadol), which also have SNRI properties. Opioid medications are recommended as second or third-line treatment for DPN.
First-line treatment for CIDP is currently intravenous immunoglobulin (IVIG) and other treatments include corticosteroids (e.g. prednisone), and plasmapheresis (plasma exchange) which may be prescribed alone or in combination with an immunosuppressant drug. Recent controlled studies show subcutaneous immunoglobin (SCIG) appears to be as effective for CIDP treatment as IVIG in most patients, and with fewer systemic side effects.
IVIG and plasmapheresis have proven benefit in randomized, double-blind, placebo-controlled trials. Despite less definitive published evidence of efficacy, corticosteroids are considered standard therapies because of their long history of use and cost effectiveness. IVIG is probably the first-line CIDP treatment, but is extremely expensive. For example, in the U.S., a single 65 g dose of Gamunex brand in 2010 might be billed at the rate of $8,000 just for the immunoglobulin—not including other charges such as nurse administration. Gamunex brand IVIG is the only U.S. FDA approved treatment for CIDP, as in 2008 Talecris, the maker of Gamunex, received orphan drug status for this drug for the treatment of CIDP.
Immunosuppressive drugs are often of the cytotoxic (chemotherapy) class, including rituximab (Rituxan) which targets B cells, and cyclophosphamide, a drug which reduces the function of the immune system. Ciclosporin has also been used in CIDP but with less frequency as it is a newer approach. Ciclosporin is thought to bind to immunocompetent lymphocytes, especially T-lymphocytes.
Non-cytotoxic immunosuppressive treatments usually include the anti-rejection transplant drugs azathioprine (Imuran/Azoran) and mycophenolate mofetil (Cellcept). In the U.S., these drugs are used as "off-label" treatments for CIDP, meaning that their use here is accepted by the FDA, but that CIDP treatment is not explicitly indicated or approved in the drug literature. Before azathioprine is used, the patient should first have a blood test that ensures that azathioprine can safely be used.
Anti-thymocyte globulin (ATG), an immunosuppressive agent that selectively destroys T lymphocytes is being studied for use in CIDP. Anti-thymocyte globulin is the gamma globulin fraction of antiserum from animals that have been immunized against human thymocytes. It is a polyclonal antibody.
Although chemotherapeutic and immunosuppressive agents have shown to be effective in treating CIDP, significant evidence is lacking, mostly due to the heterogeneous nature of the disease in the patient population in addition to the lack of controlled trials.
A review of several treatments found that azathioprine, interferon alpha and methotrexate were not effective. Cyclophosphamide and rituximab seem to have some response. Mycophenolate mofetil may be of use in milder cases. Immunoglobulin and steroids are the first line choices for treatment. Rarely bone marrow transplantation has been performed.
Physical therapy and occupational therapy may improve muscle strength, activities of daily living, mobility, and minimize the shrinkage of muscles and tendons and distortions of the joints.
Treatment is based on the underlying cause, if any. Where the likely underlying condition is known, treatment of this condition is indicated treated to reduce progression of the disease and symptoms. For cases without those conditions, there is only symptomatic treatment.
Treatment of TSP involves corticosteroids to help with inflammation. Though any success with corticosteroids is short-lived, with symptoms worsened as the dosage is reduced. A synthetic derivative, 17-alpha-ethinyltestosterone, can be used to treat Tropical spastic paraparesis, improvement in motor and bladder function was reported but not sustainable.
Mogamulizumab, an anti-CCR4 IgG1 monoclonal antibody, is also being researched as a possible treatment for Tropical spastic paraparesis. The antibody reduces HTLV-1 proviral load and production of proinflammatory cytokines. Valproic acid has also succeeded in reducing the proviral load of HTLV-1 (though clinical benefits were minimal or none). A further combination of valproic acid and zidovudine has demonstrated a decrease in proviral loads (in animals).
Treatment is dependent upon diagnosis and the stage at which the diagnosis is secured. For toxic and nutritional optic neuropathies, the most important course is to remove the offending agent if possible and to replace the missing nutritional elements, orally, intramuscularly, or intravenously. If treatment is delayed, the injury may be irreversible. The course of treatment varies with the congenital forms of these neuropathies. There are some drug treatments that have shown modest success, such as Idebenone used to treat LOHN. Often treatment is relegated to lifestyle alterations and accommodations and supportive measures.
Schwann cells provide the nerve with protection through the production of Nerve Growth Factors, and because these cells are intact this kind of nerve injury can be cured and normal feeling and sensations can be restored. Surgery can be done in order to help the nerve heal. The surgery will help with nerve regeneration, providing guidance to the nerve sprouts on where to attach on the proximal side of the injury. Damaged nerve axons can reattach themselves after surgery. Treatment of axonotmesis also consists of:
- Physical therapy or Occupational Therapy. Physical or Occupational therapy aims include:
- Pain relief
- Maintain range of motion
- Reducing muscular atrophy
- Patient education
- Use of assistive devices (Orthotic needs)
Chlorambucil is a chemotherapy drug normally used to treat leukemia as it is often used as an immunosuppressant drug, and prednisone is a steroid that has also been found to be particularly effective as an immunosuppressant. This combination of drugs has minimal to no benefits in most patients, but a small number do see small improvements such as decreased tremors. This combination has not been very effective in more severe cases, though, and is not considered a long term therapy.
The anticonvulsant valproate, an effective treatment for diabetic neuropathy, appeared to offer some protection against cisplatin-induced neuropathy in rats.
The treatment of spasticity ranges from physical activity to medication. Physical activity includes stretching, aerobic exercises and relaxation techniques. Currently, there is little understanding as to why these physical activities aid in relieving spasticity. Medical treatments include baclofen, diazepam and dantrolene which is a muscle-relaxant. Dantrolene has many side effects and as such, it is usually not the first choice in treatment of spasticity. The side effects include dizziness, nausea and weakness.
While immunotherapy works for some patients in relieving minor symptoms, overall most conventional therapies using steroids, immunosuppressants, chemotherapy, and intravenous immunoglobulin therapies have not helped most patients. This has created a need for newer and more novel therapies to be developed.
Fatigue is a common symptom and affects the daily life of individuals with MS. Changes in lifestyle are usually recommended to reduce fatigue. These include taking frequent naps and implementing exercise. MS patients who smoke are also advised to stop. Pharmacological treatment include anti-depressants and caffeine. Aspirin has also been experimented with and from clinical trial data, MS patients preferred using aspirin as compared to the placebo in the test. One hypothesis is that aspirin has an effect on the hypothalamus and can affect the perception of fatigue through altering the release of neurotransmitters and the autonomic responses.
The treatment and management of radial neuropathy can be achieved via the following methods:
- Physical therapy or occupational therapy
- Surgery(depending on the specific area and extent of damage)
- Splinting
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
Neurapraxia is often treated and cured by non-operative means. The primary goals of treatment are to maintain the proper nutrition of the paralyzed muscles, prevent contraction by the antagonists of the paralyzed muscles, and to consistently keep the joints mobile. A splint is often used in cases of neurapraxia because it is able to maintain a relaxed position of the paralyzed muscle. The splint prevents the paralyzed muscle from being overstretched either by the force of gravity or by other non-paralyzed antagonists. During the recovery period of neurapraxia, it is essential that the joints constantly undergo passive movement in order to preserve proper mobility. If joints are kept mobile, the limb has the best possible chance of benefit from the return of nervous function. Non-steroidal anti-inflammatory medications can also help to reduce swelling at the injury site. In addition to these non-operative remedies, it is suggested that muscles affected by neurapraxia be kept warm at all times. Circulation in the limb is stimulated with the use of heat.
Once voluntary movement has returned to the muscle, recovery and treatment continues by the participation in active exercises. Physical Therapy and Occupational Therapy are common sources of treatment during these early stages of restoration of active movement. Almost all cases of neurapraxia can be completely treated by non-operative means.