Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is extremely important to see an ophthalmologist regularly. Research indicates that supplements slow the disease and lessen the symptoms. Supplements such as Vitamin A, lutein, omega-3 fatty acid DHA have shown to help this disease. While supplements may help lessen the symptoms, retinitis itself is not curable. Additionally, devices such as low-vision magnifiers can be used to aid vision in patients suffering from despaired vision due to retinitis. Rehabilitation services may also aid the patient so that patients may use their vision in a more effective manner. Lastly, it is advisable to wear sunglasses even on gloomy days to protect your eyes from any ultraviolet light.
Current research on Retinitis includes studying stem cells, medications, gene therapies, and transplants to help treat/cure this condition. A study including patients with Retinitis was conducted by using gene therapy. Results from this study indicated that patients experienced some restored vision. Such studies indicate that the future may allow treatment of Retinitis by inserting healthy genes in the retina to cure this disease.
There is evidence suggesting corneal collagen cross-linking may be beneficial for patients with pellucid marginal degeneration. Research shows some promising results by combining collagen cross linking with photorefractive keratectomy, or with topography-guided transepithelial surface ablation.
Corneal transplant surgery may be difficult due to the peripheral thinning of the cornea, even with large and off-center grafts. Therefore, surgery is usually reserved for patients that do not tolerate contact lenses. Several different surgical approaches may be taken, and no one approach is currently established as the standard. Examples of surgical procedures used for PMD include: wedge resection, lamellar crescentic resection, penetrating keratoplasty, lamellar keratoplasty, epikeratoplasty and intracorneal segments. Transplantation of the entire thickness of the cornea (penetrating keratoplasty) may be performed if there is enough normal tissue present. However, if there is not enough normal tissue present, then attaching the graft is difficult.
Due to the thinning of the cornea, PMD patients are poor candidates for procedures such as LASIK and photorefractive keratectomy.
Gene therapy is currently not a treatment option, however human clinical trials for both choroideremia and Leber's congenital amaurosis (LCA) have produced somewhat promising results.
Clinical trials of gene therapy for patients with LCA began in 2008 at three different sites. In general, these studies found the therapy to be safe, somewhat effective, and promising as a future treatment for similar retinal diseases.
In 2011, the first gene therapy treatment for choroideremia was administered. The surgery was performed by Robert MacLaren, Professor of Ophthalmology at the University of Oxford and leader of the Clinical Ophthalmology Research Group at the Nuffield Laboratory of Ophthalmology (NLO).
In the study, 2 doses of the AAV.REP1 vector were injected subretinally in 12 patients with choroideremia.
There study had 2 objectives:
- to assess the safety and tolerability of the AAV.REP1 vector
- to observe the therapeutic benefit, or slowing of the retinal degeneration, of the gene therapy during the study and at a 24-month post-treatment time point
Despite retinal detachment caused by the injection, the study observed initial improved rod and cone function, warranting further study.
In 2016, researchers were optimistic that the positive results of 32 choroideremia patients treated over four and a half years with gene therapy in four countries could be long-lasting.
While nothing currently can be done to stop or reverse the retinal degeneration, there are steps that can be taken to slow the rate of vision loss. UV-blocking sunglasses for outdoors, appropriate dietary intake of fresh fruit and leafy green vegetables, antioxidant vitamin supplements, and regular intake of dietary omega-3 very-long-chain fatty acids are all recommended.
One study found that a dietary supplement of lutein increases macular pigment levels in patients with choroideremia. Over a long period of time, these elevated levels of pigmentation could slow retinal degeneration. Additional interventions that may be needed include surgical correction of retinal detachment and cataracts, low vision services, and counseling to help cope with depression, loss of independence, and anxiety over job loss.
In terms of the treatment of cytomegalovirus retinitis, oral valganciclovir, intravenous ganciclovir, IV foscarnet, and IV cidofovir are all efficient in the treatment of this condition. Also intravitreal injections, an injection of medicine into the vitreous near the retina, of foscarnet in concomitance with oral valganciclovir can be used for treatment as well.
Often individuals with CMV retinitis will need surgery for either retinal detachment or intravitreal instillation of ganciclovir. Retinal detachment occurs in up to 29% of affected eyes, repair being most effective with endolaser and silicone oil endotamponade.Intravitreal ganciclovir implant has the benefit of less systemic toxicity. An adverse effect of this is retinal detachment (and vitreous hemorrhage), also there is no systemic beneficial effect for cytomegalovirus organ disease.
There is no cure for retinitis pigmentosa, but the efficacy and safety of various prospective treatments are currently being evaluated. The efficiency of various supplements, such as Vitamin A, DHA, and Lutein, in delaying disease progression remains an unresolved, yet prospective treatment option. Clinical trials investigating optic prosthetic devices, gene therapy mechanisms, and retinal sheet transplantations are active areas of study in the partial restoration of vision in retinitis pigmentosa patients.
Studies have demonstrated the delay of rod photoreceptor degeneration by the daily intake of 15000 IU (equivalent to 4.5 mg) of vitamin A palmitate; thus, stalling disease progression in some patients. Recent investigations have shown that proper vitamin A supplementation can postpone blindness by up to 10 years (by reducing the 10% loss pa to 8.3% pa) in some patients in certain stages of the disease.
The Argus retinal prosthesis became the first approved treatment for the disease in February 2011, and is currently available in Germany, France, Italy, and the UK. Interim results on 30 patients long term trials were published in 2012. The Argus II retinal implant has also received market approval in the US. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. In June 2013, twelve hospitals in the US announced they would soon accept consultation for patients with RP in preparation for the launch of Argus II later that year. The Alpha-IMS is a subretinal implant involving the surgical implantation of a small image-recording chip beneath the optic fovea. Measures of visual improvements from Alpha-IMS studies require the demonstration of the device's safety before proceeding with clinical trials and granting market approval.
The goal of gene therapy studies is to virally supplement retinal cells expressing mutant genes associated with the retinitis pigmentosa phenotype with healthy forms of the gene; thus, allowing the repair and proper functioning of retinal photoreceptor cells in response to the instructions associated with the inserted healthy gene. Clinical trials investigating the insertion of the healthy RPE65 gene in retinas expressing the LCA2 retinitis pigmentosa phenotype measured modest improvements in vision; however, the degradation of retinal photoreceptors continued at the disease-related rate. Likely, gene therapy may preserve remaining healthy retinal cells while failing to repair the earlier accumulation of damage in already diseased photoreceptor cells. Response to gene therapy would theoretically benefit young patients exhibiting the shortest progression of photoreceptor decline; thus, correlating to a higher possibility of cell rescue via the healthy inserted gene.
The progressive nature of and lack of a definitive cure for retinitis pigmentosa contribute to the inevitably discouraging outlook for patients with this disease. While complete blindness is rare, the patient's visual acuity and visual field will continue to decline as initial rod photoreceptor and later cone photoreceptor degradation proceeds. Possible treatments remain in the research and clinical trial stages; however, treatment studies concerning visual restoration in retinitis pigmentosa prove promising for the future.
Studies indicate that children carrying the disease genotype benefit from presymptomatic counseling in order to prepare for the physical and social implications associated with progressive vision loss. While the psychological prognosis can be slightly alleviated with active counseling the physical implications and progression of the disease depend largely on the age of initial symptom manifestation and the rate of photoreceptor degradation, rather than access to prospective treatments. Corrective visual aids and personalized vision therapy provided by Low Vision Specialists may help patients correct slight disturbances in visual acuity and optimize their remaining visual field. Support groups, vision insurance, and lifestyle therapy are additional useful tools for those managing progressive visual decline.
Galactosemic infants present clinical symptoms just days after the onset of a galactose diet. They include difficulty feeding, diarrhea, lethargy, hypotonia, jaundice, cataract, and hepatomegaly (enlarged liver). If not treated immediately, and many times even with treatment, severe mental retardation, verbal dyspraxia (difficulty), motor abnormalities, and reproductive complications may ensue. The most effective treatment for many of the initial symptoms is complete removal of galactose from the diet. Breast milk and cow's milk should be replaced with soy alternatives. Infant formula based on casein hydrolysates and dextrin maltose as a carbohydrate source can also be used for initial management, but are still high in galactose. The reason for long-term complications despite a discontinuation of the galactose diet is vaguely understood. However, it has been suggested that endogenous (internal) production of galactose may be the cause.
The treatment for galactosemic cataract is no different from general galactosemia treatment. In fact, galactosemic cataract is one of the few symptoms that is actually reversible. Infants should be immediately removed from a galactose diet when symptoms present, and the cataract should disappear and visibility should return to normal. Aldose reductase inhibitors, such as sorbinil, have also proven promising in preventing and reversing galactosemic cataracts. AR inhibitors hinder aldose reductase from synthesizing galactitol in the lens, and thus restricts the osmotic swelling of the lens fibers. Other AR inhibitors include the acetic acid compounds zopolrestat, tolrestat, alrestatin, and epalrestat. Many of these compounds have not been successful in clinical trials due to adverse pharmokinetic properties, inadequate efficacy and efficiency, and toxic side effects. Testing on such drug-treatments continues in order to determine potential long-term complications, and for a more detailed mechanism of how AR inhibitors prevent and reverse the galactosemic cataract.
In general, the younger the child, the greater the urgency in removing the cataract, because of the risk of amblyopia. For optimal visual development in newborns and young infants, a visually significant unilateral congenital cataract should be detected and removed before age 6 weeks, and visually significant bilateral congenital cataracts should be removed before age 10 weeks.
Some congenital cataracts are too small to affect vision, therefore no surgery or treatment will be done. If they are superficial and small, an ophthalmologist will continue to monitor them throughout a patient's life. Commonly, a patient with small congenital cataracts that do not affect vision will eventually be affected later in life; generally this will take decades to occur.
NARP syndrome is not curable. Symptomatic relief is targeted. Antioxidants play a role in improving the oxidative phosphorylation that is otherwise impaired.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Patients usually do not require treatment due to benign nature of the disease. In case cataract develops patients generally do well with cataract surgery.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
If the nematode can be seen by an ophthalmologist, which occurs in less than half of cases, it should be treated with photocoagulation for extramacular location and surgical removal in case the larva is lying in the macula. After the worm is killed, visual acuity loss usually does not progress. Alternatively, Antihelminthic treatment such as high dose oral Albendazole and prednisolone may be used.
A 2014 Cochrane Systematic Review studied the effectiveness of two anti-VEGF treatments, ranibizumab and pegaptanib, on patients suffering from macular edema caused by CRVO. Participants on both treatment groups showed a reduction in macular edema symptoms over six months.
Another Cochrane Review examined the effectiveness and safety of two intravitreal steroid treatments, triamcinolone acetonide and dexamethasone, for patients with from CRVO-ME. The results from one trial showed that patients treated with triamcinolone acetonide were significantly more likely to show improvements in visual acuity than those in the control group, though outcome data was missing for a large proportion of the control group. The second trial showed that patients treated with dexamethasone implants did not show improvements in visual acuity, compared to patients in the control group.
Evidence also suggests that intravitreal injections and implantation of steroids inside the eye can result in improved visual outcomes for patients with chronic or refractory diabetic macular edema.
Cataract removal can be performed at any stage and no longer requires ripening of the lens. Surgery is usually 'outpatient' and performed using local anesthesia. About 9 of 10 patients can achieve a corrected vision of 20/40 or better after surgery.
Several recent evaluations found that cataract surgery can meet expectations only when significant functional impairment due to cataracts exists before surgery. Visual function estimates such as VF-14 have been found to give more realistic estimates than visual acuity testing alone. In some developed countries, a trend to overuse cataract surgery has been noted, which may lead to disappointing results.
Phacoemulsification is the most widely used cataract surgery in the developed world. This procedure uses ultrasonic energy to emulsify the cataract lens. Phacoemulsification typically comprises six steps:
- Anaesthetic – The eye is numbed with either a subtenon injection around the eye (see: retrobulbar block) or topical anesthetic eye drops. The former also provides paralysis of the eye muscles.
- Corneal incision – Two cuts are made at the margin of the clear cornea to allow insertion of instruments into the eye.
- Capsulorhexis – A needle or small pair of forceps is used to create a circular hole in the capsule in which the lens sits.
- Phacoemulsification – A handheld ultrasonic probe is used to break up and emulsify the lens into liquid using the energy of ultrasound waves. The resulting 'emulsion' is sucked away.
- Irrigation and aspiration – The cortex, which is the soft outer layer of the cataract, is aspirated or sucked away. Fluid removed is continually replaced with a saline solution to prevent collapse of the structure of the anterior chamber (the front part of the eye).
- Lens insertion – A plastic, foldable lens is inserted into the capsular bag that formerly contained the natural lens. Some surgeons also inject an antibiotic into the eye to reduce the risk of infection. The final step is to inject salt water into the corneal wounds to cause the area to swell and seal the incision.
Extracapsular cataract extraction (ECCE) consists of removing the lens manually, but leaving the majority of the capsule intact. The lens is expressed through a 10- to 12-mm incision which is closed with sutures at the end of surgery. ECCE is less frequently performed than phacoemulsification, but can be useful when dealing with very hard cataracts or other situations where emulsification is problematic. Manual small incision cataract surgery (MSICS) has evolved from ECCE. In MSICS, the lens is removed through a self-sealing scleral tunnel wound in the sclera which, ideally, is watertight and does not require suturing. Although "small", the incision is still markedly larger than the portal in phacoemulsion. This surgery is increasingly popular in the developing world where access to phacoemulsification is still limited.
Intracapsular cataract extraction (ICCE) is rarely performed. The lens and surrounding capsule are removed in one piece through a large incision while pressure is applied to the vitreous membrane. The surgery has a high rate of complications.
In 2005, steroids were investigated for the treatment of macular edema due to retinal blood vessel blockage such as CRVO and BRVO.
The severity and prognosis vary with the type of mutation involved.
How refractive errors are treated or managed depends upon the amount and severity of the condition. Those who possess mild amounts of refractive error may elect to leave the condition uncorrected, particularly if the patient is asymptomatic. For those who are symptomatic, glasses, contact lenses, refractive surgery, or a combination of the three are typically used.
Strategies being studied to slow worsening include adjusting working conditions, increasing the time children spend outdoors, and special types of contact lenses. In children special contact lenses appear to slow worsening of nearsightedness.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
Currently there is no curative treatment for KSS. Because it is a rare condition, there are only case reports of treatments with very little data to support their effectiveness. Several promising discoveries have been reported which may support the discovery of new treatments with further research. Satellite cells are responsible for muscle fiber regeneration. It has been noted that mutant mtDNA is rare or undetectable in satellite cells cultured from patients with KSS. Shoubridge et al. (1997) asked the question whether wildtype mtDNA could be restored to muscle tissue by encouraging muscle regeneration. In the forementioned study, regenerating muscle fibers were sampled at the original biopsy site, and it was found that they were essentially homoplasmic for wildtype mtDNA. Perhaps with future techniques of promoting muscle cell regeneration and satellite cell proliferation, functional status in KSS patients could be greatly improved.
One study described a patient with KSS who had reduced serum levels of coenzyme Q10. Administration of 60–120 mg of Coenzyme Q10 for 3 months resulted in normalization of lactate and pyruvate levels, improvement of previously diagnosed first degree AV block, and improvement of ocular movements.
A screening ECG is recommended in all patients presenting with CPEO. In KSS, implantation of pacemaker is advised following the development of significant conduction disease, even in asymptomatic patients.
Screening for endocrinologic disorders should be performed, including measuring serum glucose levels, thyroid function tests, calcium and magnesium levels, and serum electrolyte levels. Hyperaldosteronism is seen in 3% of KSS patients.
Treatment for CLSD is largely focused on treating the symptoms of the disorder, because it is still in the early stages of research. Symptomatic treatment is also the only option due to the genetic nature of the disorder. Treatment may include surgeries to correct facial and cranial dysmorphisms or therapy sessions to help alleviate behavioral abnormalities associated with the disorder.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.