Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is most commonly directed at autoimmune disease and may be needed to treat bulky lymphoproliferation. First line therapies include corticosteroids (very active but toxic with chronic use), and IVIgG, which are not as effective as in other immune cytopenia syndromes.
Second line therapies include: mycophenolate mofetil (cellcept) which inactivates inosine monophosphate, most studied in clinical trials with responses varying (relapse, resolution, partial response). It does not affect lymphoproliferation or reduce DNTs, with no drug-drug interactions. This treatment is commonly used agent in patients who require chronic treatment based on tolerance and efficacy. It may cause hypogammaglobulinemia (transient) requiring IVIgG replacement.
Sirolimus (rapamycin, rapamune) which is a mTOR (mammalian target of rapamycin) inhibitor can be active in most patients and can in some cases lead to complete or near-complete resolution of autoimmune disease (>90%) With this treatment most patients have complete resolution of lymphoproliferation, including lymphadenopathy and splenomegaly (>90%) and have elimination of peripheral blood DNTs. Sirolimus may not be as immune suppressive in normal lymphocytes as other agents. Some patients have had improvement in immune function with transition from cellcept to rapamycin and it has not been reported to cause hypogammaglobulinemia. Hypothetically, Sirolimus may have lower risk of secondary cancers as opposed to other immune suppressants and requires therapeutic drug monitoring. It is the second most commonly used agent in patients that require chronic therapy. It is mostly well tolerated (though side effects include mucositis, diarrhea, hyperlipidemia, delayed wound healing) with drug-drug interactions. It has better activity against autoimmune disease and lymphoproliferation than mycophenolate mofetil and other drugs; however, sirolimus requires therapeutic drug monitoring and can cause mucositis. A risk with any agent in pre-cancerous syndrome as immune suppression can decreased tumor immunosurvellence. Its mTOR inhibitors active against lymphomas, especially EBV+ lymphomas. The Goal serum trough is 5-15 ng/ml and can consider PCP prophylaxis but usually not needed.
Other treatments may include drugs like Fansidar, mercaptopurine: More commonly used in Europe. Another is rituximab but this can cause lifelong hypogammaglobulinemia and a splenectomy but there is a >30% risk of pneumococcal sepsis even with vaccination and antibiotic prophylaxis
In secondary cases, treatment of the cause, where possible, is indicated. Additionally, treatment for HLH itself is usually required.
While optimal treatment of HLH is still being debated, current treatment regimes usually involve high dose corticosteroids, etoposide and cyclosporin. Intravenous immunoglobulin is also used. Methotrexate and vincristine have also been used. Other medications include cytokine targeted therapy.
An experimental treatment, an anti IFN-gamma monoclonal antibody tentatively named NI-0501, is in clinical trials for treating primary HLH. The FDA awarded breakthrough drug status to NI-0501 in 2016.
Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
PTLD may spontaneously regress on reduction or cessation of immunosuppressant medication, and can also be treated with addition of anti-viral therapy. In some cases it will progress to non-Hodgkin's lymphoma and may be fatal. A phase 2 study of adoptively transferred EBV-specific T cells demonstrated high efficacy with minimal toxicity.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
While investigational drug therapies exist, no curative drug treatment exists for any of the MPDs. The goal of treatment for ET and PV is prevention of thrombohemorrhagic complications. The goal of treatment for MF is amelioration of anemia, splenomegaly, and other symptoms. Low-dose aspirin is effective in PV and ET. Tyrosine kinase inhibitors like imatinib have improved the prognosis of CML patients to near-normal life expectancy.
Recently, a "JAK2" inhibitor, namely ruxolitinib, has been approved for use in primary myelofibrosis. Trials of these inhibitors are in progress for the treatment of the other myeloproliferative neoplasms.
Treatment depends on the grade (I-III) but typically consist of cortisone, rituximab and chemotherapy (etoposide, vincristine, cyclophosphamide, doxorubicin). Methotrexate has been seen to induce LYG. Interferon alpha has been used by the US National Cancer Institute with varying results. In recent years hematopoietic stem cell transplantation has been performed on LYG-patients with relative good success; a 2013 study identifying 10 cases found that 8 patients survived the treatment and were disease free several years later. Two of the disease free patients later died, one from suicide and one from graft versus host disease after a second transplantation 4 years later. The remaining two patients died from sepsis after the transplantation.
What happens after your child is diagnosed with CRMO/CNO?
Find a doctor who has experience with patients with CRMO/CNO. CRMO/CNO in children is generally treated by a pediatric rheumatologist. Ask your doctor for a referral.
Why do we treat CRMO/CNO?
- Reduce inflammation
- Prevent bone damage and bone deformities
- Decrease pain
How is CRMO/CNO treated?
CRMO/CNO is different for each patient. Not every child responds to every treatment. Your doctor may need to try several medications before finding the one that works for your child. In severe cases, doctors may combine medications to treat the disease. Your doctor will work with you and your child to help find the best treatment.
For some CRMO/CNO patients, the disease can be managed with non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are the first line treatment. However, if NSAIDs are not effective, or if your child does not tolerate NSAIDs well, second line treatments are available.
First line treatments include Naproxen (Aleve), Celecoxib (Celebrex) Meloxicam (Mobic), Piroxicam (Feldene), Indomethacin (Indocin), Diclofenac (Voltaren).
Second line treatments include corticosteroids (Prednisone/Prednisolone), Methotrexate (Otrexup, Rasuvo, Trexall), Sulfasalazine (Azulfidine), Pamidronate (Aredia), Zolendronic Acid (Zometa), Adalimumab (Humira), Etanercept (Enbrel), Infliximab (Remicade).
These medications are also used in children with other inflammatory and/or bone conditions. Side effects may occur while taking these medications. Your physician will have a discussion with you prior to starting any new treatment.
Alemtuzumab has been investigated for use in treatment of refractory T-cell large granular lymphocytic leukemia.
There are many lymphoproliferative disorders that are associated with organ transplantation and immunosuppressant therapies. In most reported cases, these cause B cell lymphoproliferative disorders; however, some T cell variations have been described. The T cell variations are usually caused by the prolonged use of T cell suppressant drugs, such as sirolimus, tacrolimus, or ciclosporin.
There is no standard therapy for multicentric Castleman disease. Treatment modalities change based on HHV-8 status, so it is essential to determine HHV-8 status before beginning treatment. For HHV-8-associated MCD the following treatments have been used: rituximab, antiviral medications such as ganciclovir, and chemotherapy.
Treatment with the antiherpesvirus medication ganciclovir or the anti-CD20 B cell monoclonal antibody, rituximab, may markedly improve outcomes. These medications target and kill B cells via the B cell specific CD20 marker. Since B cells are required for the production of antibodies, the body's immune response is weakened whilst on treatment and the risk of further viral or bacterial infection is increased. Due to the uncommon nature of the condition there are not many large scale research studies from which standardized approaches to therapy may be drawn, and the extant case studies of individuals or small cohorts should be read with caution. As with many diseases, the patient's age, physical state and previous medical history with respect to infections may impact the disease progression and outcome.
Natural killer (NK) cell therapy is used in pediatrics for children with relapsed lymphoid leukemia. These patients normally have a resistance to chemotherapy, therefore, in order to continue on, must receive some kind of therapy. In some cases, NK cell therapy is a choice.
NK cells are known for their ability to eradicate tumor cells without any prior sensitization to them. One problem when using NK cells in order to fight off lymphoid leukemia is the fact that it is hard to amount enough of them to be effective. One can receive donations of NK cells from parents or relatives through bone marrow transplants. There are also the issues of cost, purity and safety. Unfortunately, there is always the possibility of Graft vs host disease while transplanting bone marrow.
NK cell therapy is a possible treatment for many different cancers such as Malignant glioma.
The prognosis is guarded with an overall mortality of 50%. Poor prognostic factors included HLH associated with malignancy, with half the patients dying by 1.4 months compared to 22.8 months for non-tumour associated HLH patients.
Secondary HLH in some individuals may be self-limited because patients are able to fully recover after having received only supportive medical treatment (i.e., IV immunoglobulin only). However, long-term remission without the use of cytotoxic and immune-suppressive therapies is unlikely in the majority of adults with HLH and in those with involvement of the central nervous system (brain and/or spinal cord).
For HHV-8-negative MCD (idiopathic MCD), the following treatments have been used: corticosteroids, rituximab, monoclonal antibodies against IL-6 such as tocilizumab and siltuximab, and the immunomodulator thalidomide.
Prior to 1996 MCD carried a poor prognosis of about 2 years, due to autoimmune hemolytic anemia and non-Hodgkin's lymphoma which may arise as a result of proliferation of infected cells. The timing of diagnosis, with particular attention to the difficulty of determining the cause of B symptoms without a CT scan and lymph node biopsy, may have a significant impact on the prognosis and risk of death. Left untreated, MCD usually gets worse and becomes increasingly difficult and unresponsive to current treatment regimens.
Siltuximab prevents it from binding to the IL-6 receptor, was approved by the U.S. Food and Drug Administration for the treatment of multicentric Castleman disease on April 23, 2014. Preliminary data suggest that treatment siltuximab may achieve tumour and symptomatic response in 34% of patients with MCD.
Other treatments for multicentric Castleman disease include the following:
- Corticosteroids
- Chemotherapy
- Thalidomide
Bisphosphonate therapy has been suggested as a first-line therapeutic option in many case reports and series.
Treatment with tumor necrosis factor alpha antagonists (TNF inhibitors) have been tried in few patients with limited success. Other drugs that are used in psoriatic arthritis, to which SAPHO syndrome is closely related, have also been used in this condition. They include NSAIDs, corticosteroids, sulfasalazine, methotrexate, ciclosporin and leflunomide.
Some patients have responded to antibiotics. The rationale for their use is that Propionibacterium acnes, a bacterium known for its role in acne, has been isolated from bone biopsies of SAPHO patients.
Surgical resection is usually ineffective because of the depth of the tumour. Treatment with irradiation and corticosteroids often only produces a partial response and tumour recurs in more than 90% of patients. Median survival is 10 to 18 months in immunocompetent patients, and less in those with AIDS. The addition of IV methotrexate and folinic acid (leucovorin) may extend survival to a median of 3.5 years. If radiation is added to methotrexate, median survival time may increase beyond 4 years. However, radiation is not recommended in conjunction with methotrexate because of an increased risk of leukoencephalopathy and dementia in patients older than 60. In AIDS patients, perhaps the most important factor with respect to treatment is the use of highly active anti-retroviral therapy (HAART), which affects the CD4+ lymphocyte population and the level of immunosuppression. The optimal treatment plan for patients with PCNSL has not been determined. Combination chemotherapy and radiotherapy at least doubles survival time, but causes dementia and leukoencephalopathy in at least 50% of patients who undergo it. The most studied chemotheraputic agent in PCNSL is methotrexate (a folate analogue that interferes with DNA repair). Methotrexate therapy in patients with PCNSL typically requires hospitalization for close monitoring and intravenous fluids. Leucovorin is often given for the duration of the therapy. Standard chemotherapeutic regimens for lymphoma such as CHOP are ineffective in PCNSL, probably due to poor penetration of the agents through the blood brain barrier.
Newer treatments, such as high dose chemotherapy combined with stem cell transplant are proving to increase survival by years.
A phase 1 clinical trial of ibrutinib - an inhibitor of Bruton's tyrosine kinase - in 13 patients reported responses in 10 (77%). Five of the responses were complete.
There is no consensus regarding the best treatment protocol. Several considerations should be taken into account including age, stage, and prognostic scores (see International Prognostic Index). Patients with advanced disease who are asymptomatic might benefit from a watch and wait approach, as early treatment does not provide survival benefit. When patients are symptomatic, specific treatment is required, which might include various combinations of alkylators, nucleoside analogues, anthracycline-containing chemotherapy regimens (e.g., CHOP), monoclonal antibodies (e.g. rituximab),
radioimmunotherapy, autologous (self) and allogeneic (donor) hematopoietic stem cell transplantation. Follicular lymphoma is regarded as incurable, unless the disease is localized, in which case it can be cured by local irradiation. Although allogeneic stem cell transplantation may be curative, the mortality from the procedure is too high to be a first line option.
In 2010 rituximab was approved by the European Commission for first-line maintenance treatment of follicular lymphoma. Pre-clinical evidence suggests that rituximab could be also used in combination with integrin inhibitors to overcome the resistance to rituximab mediated by stromal cells . However, follicular lymphoma which is CD20 negative will not benefit from Rituximab, which targets CD20.
Trial results released in June 2012 show that bendamustine, a drug first developed in East Germany in the 1960s, more than doubled disease progression-free survival when given along with rituximab. This combination therapy also left patients with fewer side effects than the older treatment (a combination of five drugs—rituximab, cyclophosphamide (Cytoxan), doxorubicin (Adriamycin), vincristine and prednisone, collectively called R-CHOP).
There are many recent and current clinical trials for follicular lymphoma. For example, personalised idiotype vaccines have shown promise, particularly as upfront therapy, but have still to prove their efficacy in randomized clinical trials.
Studies on the treatment of cryofibrinoginemic disease have involved relatively few patients, are limited primarily to case reports, and differ based on whether the disease is primary or secondary. In all cases of cryofibrinogenemic disease, however, patients should avoid the exposure of afflicted body parts to cold weather or other environmental triggers of symptoms and avoid using cigarettes or other tobacco products. In severe cases, these individuals also risk developing serious thrombotic events which lead to tissue necrosis that may result in secondary bacterial infections and require intensive antimicrobial therapy and/or amputations. Careful treatment of these developments is required.
The initial response to radiotherapy is often excellent, and may result in a complete remission. However, the duration of response with radiotherapy alone remains short, with median survival after treatment with radiotherapy just 18 months. Methotrexate based chemotherapy markedly improves survival, with some studies showing median survival after methotrexate chemotherapy reaching 48 months.
ANKL is treated similarly to most B-cell lymphomas. Anthracycline-containing chemotherapy regimens are commonly offered as the initial therapy. Some patients may receive a stem cell transplant.
Most patients will die 2 years after diagnosis.
The protein electrophoresis test should be repeated annually, and if there is any concern for a rise in the level of monoclonal protein, then prompt referral to a hematologist is required. The hematologist, when first evaluating a case of MGUS, will usually perform a skeletal survey (X-rays of the proximal skeleton), check the blood for hypercalcemia and deterioration in renal function, check the urine for Bence Jones protein and perform a bone marrow biopsy. If none of these tests are abnormal, a patient with MGUS is followed up once every 6 months to a year with a blood test (serum protein electrophoresis). Although patients with MGUS have sometimes been reported to suffer from Small Fiber Neuropathy in monoclonal gammopathy of undetermined significance:a debilitating condition which causes bizarre sensory problems to painful sensory problems. peripheral neuropathy, no treatment is indicated.
Treatment of secondary cryofibrinoginemic disease may use the same methods used for treating the primary disease wherever necessary but focus on treating the associated infectious, malignant, premalignant, vasculitis, or autoimmune disorder with the methods prescribed for the associated disorder. Case report studies suggest that: corticosteroids and immunosuppressive drug regimens, antimicrobial therapy, and anti-neoplastic regimens can be effective treatments for controlling the cryfibrinoginemic disease in cases associated respectively with autoimmune, infectious, and premalignant/malignant disorders.
In general, the first line of treatment for Burkitt’s lymphoma is intensive chemotherapy. A few of these regimens are: the GMALL-B-ALL/NHL2002 protocol, the modified Magrath regimen (R-CODOX-M/IVAC). COPADM, hyper-CVAD, and the Cancer and Leukemia Group B (CALGB) 8811 regimen; these can be associated with rituximab. In older patients treatment may be dose-adjusted EPOCH with rituximab.
The effects of the chemotherapy, as with all cancers, depend on the time of diagnosis. With faster-growing cancers, such as Burkitt's, the cancer actually responds faster than with slower-growing cancers. This rapid response to chemotherapy can be hazardous to the patient, as a phenomenon called "tumor lysis syndrome" could occur. Close monitoring of the patient and adequate hydration is essential during the process. Since Burkitts lymphoma has high propensity to spread to the central nervous system (lymphomatous meningitis), intrathecal chemotherapy with methotrexate and/or ARA-C and/or prednisolone is given alongside with systemic chemotherapy.
Chemotherapy
- cyclophosphamide
- doxorubicin
- vincristine
- methotrexate
- cytarabine
- ifosfamide
- etoposide
- rituximab
Other treatments for Burkitt's lymphoma include immunotherapy, bone marrow transplants, stem cell transplant, surgery to remove the tumor, and radiotherapy.
The current mortality is over 60% after 5 years. However, due to hematopoietic stem cell transplantation being performed only in recent years, this number could potentially be lowered in the future. In patients with CNS involvement, treatment with Interferon alpha at US National Cancer Institute resulted in complete remission in 90% of patients.