Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no known cure for achondroplasia even though the cause of the mutation in the growth factor receptor has been found. Although used by those without achondroplasia to aid in growth, human growth hormone does not help people with achondroplasia. However, if desired, the controversial surgery of limb-lengthening will lengthen the legs and arms of someone with achondroplasia.
Usually, the best results appear within the first and second year of therapy. After the second year of growth hormone therapy, beneficial bone growth decreases. Therefore, GH therapy is not a satisfactory long term treatment.
There is no known cure. In selected patients orthopaedic surgery may be helpful to try to gain some functionality of severely impaired joints.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Genetic mutations of most forms of dwarfism caused by bone dysplasia cannot be altered yet, so therapeutic interventions are typically aimed at preventing or reducing pain or physical disability, increasing adult height, or mitigating psychosocial stresses and enhancing social adaptation.
Forms of dwarfism associated with the endocrine system may be treated using hormonal therapy. If the cause is prepubescent hyposecretion of growth hormone, supplemental growth hormone may correct the abnormality. If the receptor for growth hormone is itself affected, the condition may prove harder to treat. Hypothyroidism is another possible cause of dwarfism that can be treated through hormonal therapy. Injections of thyroid hormone can mitigate the effects of the condition, but lack of proportion may be permanent.
Pain and disability may be ameliorated by physical therapy, braces or other orthotic devices, or by surgical procedures. The only simple interventions that increase perceived adult height are dress enhancements, such as shoe lifts or hairstyle. Growth hormone is rarely used for shortness caused by bone dysplasias, since the height benefit is typically small (less than ) and the cost high. The most effective means of increasing adult height by several inches is distraction osteogenesis, though availability is limited and the cost is high in terms of money, discomfort, and disruption of life. Most people with dwarfism do not choose this option, and it remains controversial. For other types of dwarfism, surgical treatment is not possible.
The cost of treatment depends on the amount of growth hormone given, which in turn depends on the child's weight and age. One year's worth of drugs normally costs about US $20,000 for a small child and over $50,000 for a teenager. These drugs are normally taken for five or more years.
The decision to treat is based on a belief that the child will be disabled by being extremely short as an adult, so that the risks of treatment (including sudden death) will outweigh the risks of not treating the symptom of short stature. Although short children commonly report being teased about their height, most adults who are very short are not physically or psychologically disabled by their height. However, there is some evidence to suggest that there is an inverse linear relationship with height and with risk of suicide.
Treatment is expensive and requires many years of injections with human growth hormones. The result depends on the cause, but is typically an increase in final height of about taller than predicted. Thus, treatment takes a child who is expected to be much shorter than a typical adult and produces an adult who is still obviously shorter than average. For example, several years of successful treatment in a girl who is predicted to be as an adult may result in her being instead.
Increasing final height in children with short stature may be beneficial and could enhance health-related quality of life outcomes, barring troublesome side effects and excessive cost of treatments.
The complete or partial absence of the pectoralis muscle is the malformation that defines Poland Syndrome. It can be treated by inserting a custom implant designed by CAD (computer aided design). A 3D reconstruction of the patient's chest is performed from a medical scanner to design a virtual implant perfectly adapted to the anatomy of each one. The implant is made of medical silicone unbreakable rubber. This treatment is purely cosmetic and does not make up for the patient's imbalanced upper body strength.
The Poland syndrome malformations being morphological, correction by custom implant is a first-line treatment. This technique allows a wide variety of patients to be treated with good outcomes. Poland Syndrome can be associated with bones, subcutaneous and mammary atrophy: if the first, as for pectus excavatum, is successfully corrected by a custom implant, the others can require surgical intervention such as lipofilling or silicone breast implant, in a second operation.
Children who develop severe bowing before the age of 3 may be treated with knee ankle foot orthoses. However, bracing may fail, or bowing may not be detected until the child is older. In some cases, surgery may be performed. Surgery may involve cutting the shin bone (tibia) to realign it, and sometimes lengthen it as well.
Other times, the growth of just the outer half of the tibia can be surgically restricted to allow the child’s natural growth to reverse the bowing process. This second, much smaller surgery is most effective in children with less severe bowing and significant growth remaining.
Return to normal function and cosmetic appearance is expected if the knee can be properly aligned.
Treatment for children with Blount's disease is typically braces but surgery may also be necessary, especially for teenagers. The operation consists of removing a piece of tibia, breaking the fibula and straightening out the bone; there is also a choice of elongating the legs. If not treated early enough, the condition worsens quickly.
The surgery takes place under general anaesthesia and lasts less than 1 hour. The surgeon prepares the locus to the size of the implant after performing a 8-cm axillary incision and inserts the implant beneath the skin. The closure is made in 2 planes.
The implant will replace the pectoralis major muscle, thus enabling the thorax to be symmetrical and, in women, the breast as well. If necessary, especially in the case of women, a second operation will complement the result by the implantation of a breast implant and / or lipofilling.
Lipomodelling is progressively used in the correction of breast and chest wall deformities. In Poland syndrome, this technique appears to be a major advance that will probably revolutionize the treatment of severe cases. This is mainly due to its ability to achieve previously unachievable quality of reconstruction with minimal scaring.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.
Generally, no treatment is required for idiopathic presentation as it is a normal anatomical variant in young children. Treatment is indicated when it persists beyond 3 and a half years old. In the case of unilateral presentation or progressive worsening of the curvature, when caused by rickets, the most important thing is to treat the constitutional disease, at the same time instructing the care-giver never to place the child on its feet. In many cases this is quite sufficient in itself to effect a cure, but matters can be hastened somewhat by applying splints. When the deformity arises in older patients, either from trauma or occupation, the only permanent treatment is surgery, but orthopaedic bracing can provide relief.
First options for treatment are conservative, using hot or cold packs, rest and NSAID's at first. If no improvement is made, a splint or brace can be used to keep the deviated arm straight. When none of the conservative treatments work surgical intervention is designated.
Many types of dwarfism are currently impossible to prevent because they are genetically caused. Genetic conditions that cause dwarfism may be identified with genetic testing, by screening for the specific variations that result in the condition. However, due to the number of causes of dwarfism, it may be impossible to determine definitively if a child will be born with dwarfism.
Dwarfism resulting from malnutrition or a hormonal abnormality may be treated with an appropriate diet or hormonal therapy. Growth hormone deficiency may be remedied via injections of human growth hormone (HGH) during early life.
Administration of GH has no effect on IGF-1 production, therefore treatment is mainly by biosynthetic IGF-1. IGF-1 must be taken before puberty to be effective.
The drug product Increlex (mecasermin), developed by the company Tercica, now Genentech, was approved by the US Food and Drug Administration in August 2005 for replacing IGF-1 in patients who are deficient.
IPLEX (Mecasermin rinfabate) is composed of recombinant human IGF-1 (rhIGF-1) and its binding protein IGFBP-3. It was approved by the U.S. Food and Drug Administration (FDA) in 2005 for treatment of primary IGF-1 deficiency or GH gene deletion. Side effects from IPLEX are hypoglycemia. IPLEX's manufacturing company, Insmed, after selling its protein production facility, can no longer develop proteins, thus can no longer manufacture IPLEX as of a statement released in July 2009.
The fibrocartilaginous effects of fibrochondrogenesis on chondrocytes has shown potential as a means to produce therapeutic cellular biomaterials via tissue engineering and manipulation of stem cells, specifically human embryonic stem cells.
Utilization of these cells as curative cartilage replacement materials on the cellular level has shown promise, with beneficial applications including the repair and healing of damaged knee menisci and synovial joints; temporomandibular joints, and vertebra.
More severe types (Bayne type III en IV) of radial dysplasia can be treated with surgical intervention. The main goal of centralization is to increase hand function by positioning the hand over the distal ulna, and stabilizing the wrist in straight position. Splinting or soft-tissue distraction may be used preceding the centralization.
In classic centralization central portions of the carpus are removed to create a notch for placement of the ulna. A different approach is to place the metacarpal of the middle finger in line with the ulna with a fixation pin.
If radial tissues are still too short after soft-tissue stretching, soft tissue release and different approaches for manipulation of the forearm bones may be used to enable the placement of the hand onto the ulna. Possible approaches are shortening of the ulna by resection of a segment, or removing carpal bones. If the ulna is significantly bent, osteotomy may be needed to straighten the ulna. After placing the wrist in the correct position, radial wrist extensors are transferred to the extensor carpi ulnaris tendon, to help stabilize the wrist in straight position. If the thumb or its carpometacarpal joint is absent, centralization can be followed by pollicization. Postoperatively, a long arm plaster splinter has to be worn for at least 6 to 8 weeks. A removable splint is often worn for a long period of time.
Radial angulation of the hand enables patients with stiff elbows to reach their mouth for feeding; therefore treatment is contraindicated in cases of extension contracture of the elbow. A risk of centralization is that the procedure may cause injury to the ulnar physis, leading to early epiphyseal arrest of the ulna, and thereby resulting in an even shorter forearm. Sestero et al. reported that ulnar growth after centralization reaches from 48% to 58% of normal ulnar length, while ulnar growth in untreated patients reaches 64% of normal ulnar length. Several reviews note that centralization can only partially correct radial deviation of the wrist and that studies with longterm follow-up show relapse of radial deviation.
Gene based therapy is being studied. In June 2015, BioMarin announced positive results of their Phase 2 study, stating that 10 children experienced a mean increase of 50% in their annualized growth velocity.
"Ulna reduction"
Adults with Madelung’s deformity may suffer from ulnar-sided wrist pain. Madelung's Deformity is usually treated by treating the distal radial deformity. However, if patients have a positive ulnar variance and focal wrist pathology, it’s possible to treat with an isolated ulnar-shortening osteotomy. In these patients the radial deformity is not treated.
The ulna is approached from the subcutaneous border. A plate is attached to the distal end of the ulna, to plan the osteotomy. An oblique segment is removed from the ulna, after which the distal radial-ulnar joint is freed, making sure structures stay attached to the styloid process. After this, the freed distal end is reattached to the proximal ulna with the formerly mentioned plate.
"Total DRUJ replacement"
An alternative treatment for patients with ulnar-sided wristpain is a total replacement of the distal radial-ulnar joint. There are many surgical treatments of the condition, but most of these only improve the alignment and function of the radiocarpal joint. A persistent problem in these treatments has been the stiff DRUJ. However, a prosthesis helps in managing the pain, and might also improve the range of motion of the wrist.
The procedure consists of making a hockey-stick shaped incision along the ulnar border. This incision is made between the fifth and sixth dorsal compartment. Being careful not to harm any essential structures, like the posterior interosseous nerve, the incision is continued between the extensor carpi ulnaris and the extensor digiti quinti, until the ulna is found. The ulnar head is then removed. A guide wire is then inserted in the medullary canal of the ulna, allowing centralization for a cannulated drill bit. A poly-ethylene ball, which will serve as the prosthesis, is then placed over the distal peg. After confirming full range of motion, the skin will be closed.
"Dome Osteotomy"
In case of Madelung's Deformity in conjunction with radial pain, a dome osteotomy may be conducted. For more information about this procedure, please refer to the treatment of Madelung's Deformity in children.
Mainly surgical approach has to be taken.
If cavity is small then surgical evacuation & curettage is performed under antibiotic cover.
If cavity is large then after evacuation, packing with cancellous bone chips
Osteofibrous dysplasia is treated with marginal resection with or without bone grafting, depending on the size of the lesion and the extent of bony involvement. However, due to the high rate of recurrence in skeletally immature individuals, this procedure is usually postponed until skeletal maturity.
Often, an interdisciplinary approach is recommended to treat the issues associated with CdLS. A team for promoting the child's well-being often includes speech, occupational and physical therapists, teachers, physicians and parents.