Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Radiation therapy may include photon-beam or proton-beam treatment, or fractionated external beam radiation. Radiosurgery may be used in lieu of surgery in small tumors located away from critical structures. Fractionated external-beam radiation also can be used as primary treatment for tumors that are surgically unresectable or, for patients who are inoperable for medical reasons.
Radiation therapy often is considered for WHO grade I meningiomas after subtotal (incomplete) tumor resections. The clinical decision to irradiate after a subtotal resection is somewhat controversial, as no class I randomized, controlled trials exist on the subject. Numerous retrospective studies, however, have suggested strongly that the addition of postoperative radiation to incomplete resections improves both progression-free survival (i.e. prevents tumor recurrence) and improves overall survival.
In the case of a grade III meningioma, the current standard of care involves postoperative radiation treatment regardless of the degree of surgical resection. This is due to the proportionally higher rate of local recurrence for these higher-grade tumors. Grade II tumors may behave variably and there is no standard of whether to give radiotherapy following a gross total resection. Subtotally resected grade II tumors should be radiated.
Likely, current chemotherapies are not effective. Antiprogestin agents have been used, but with variable results. A 2007 study of whether hydroxyurea has the capacity to shrink unresectable or recurrent meningiomas is being further evaluated.
Various management options exist depending on the severity of symptoms and their effect on the patient. The main management options are: observation, craniotomy for microsurgical resection, neuroendoscopic removal, stereotactic drainage, and cerebrospinal fluid diversion with bilateral ventriculoperitoneal shunting placement.
Multiple studies have been found on how to remove a colloid cyst. One is an endoscopic removal. To remove the cyst, make a small incision. The endoscope is inserted into the brain and then moved toward the tumor in the ventricular compartment. The tumor is hit with an electric current. The interior of the cyst is removed followed by the cyst wall. The electric current is then used to kill the remaining pieces of the cyst. This whole process, including closing of the incision and removal of the scope is completed within 45 minutes to an hour. The patients are able to leave the hospital after 1 or 2 days. A case was done with the absence of ventriculomegaly that has been contraindication in an endoscopic removal. The study found that with normal-sized ventricles are not a contraindication. They actually have comparable or less complication rates. Another study experimented with a smaller retractor tube, 12 mm instead of 16–22 mm. The study found that using a 12 mm tube on a 10 mm colloid cyst. The surgery was successful in removing the cyst with a smaller retractor tube for resection while minimizing injury. The surgery had potential for improving outcomes.
Neuroendoscopic third ventriculostomy during surgery can be used to prevent further hydrocephalus post op. This removes the need for insertion of bilateral shunts.
The objective of irradiation is to halt the growth of the acoustic neuroma tumour, it does not excise it from the body, as the term 'radiosurgery' or 'gammaknife' implies. Radiosurgery is only suitable for small to medum size tumors.
Acoustic neuromas are managed by either surgery, radiation therapy, or observation with regular MRI scanning. With treatment, the likelihood of hearing preservation varies inversely with the size of the tumor; for large tumors, preservation of hearing is rare. Because acoustic neurmas, meningiomas and most other CPA tumors are benign, slow growing or non-growing, and non-invasive, observation is a viable management option.
While there is no current cure, the treatments for Chiari malformation are surgery and management of symptoms, based on the occurrence of clinical symptoms rather than the radiological findings. The presence of a syrinx is known to give specific signs and symptoms that vary from dysesthetic sensations to algothermal dissociation to spasticity and paresis. These are important indications that decompressive surgery is needed for patients with Chiari Malformation Type II. Type II patients have severe brain stem damage and rapidly diminishing neurological response.
Decompressive surgery involves removing the lamina of the first and sometimes the second or third cervical vertebrae and part of the occipital bone of the skull to relieve pressure. The flow of spinal fluid may be augmented by a shunt. Since this surgery usually involves the opening of the dura mater and the expansion of the space beneath, a dural graft is usually applied to cover the expanded posterior fossa.
A small number of neurological surgeons believe that detethering the spinal cord as an alternate approach relieves the compression of the brain against the skull opening (foramen magnum), obviating the need for decompression surgery and associated trauma. However, this approach is significantly less documented in the medical literature, with reports on only a handful of patients. It should be noted that the alternative spinal surgery is also not without risk.
Complications of decompression surgery can arise. They include bleeding, damage to structures in the brain and spinal canal, meningitis, CSF fistulas, occipito-cervical instability and pseudomeningeocele. Rare post-operative complications include hydrocephalus and brain stem compression by retroflexion of odontoid. Also, an extended CVD created by a wide opening and big duroplasty can cause a cerebellar "slump". This complication needs to be corrected by cranioplasty.
In certain cases, irreducible compression of the brainstem occurs from in front (anteriorly or ventral) resulting in a smaller posterior fossa and associated Chiari malformation. In these cases, an anterior decompression is required. The most commonly used approach is to operate through the mouth (transoral) to remove the bone compressing the brainstem, typically the odontoid. This results in decompressing the brainstem and therefore gives more room for the cerebellum, thus decompressing the Chiari malformation. Arnold Menzes, MD, is the neurosurgeon who pioneered this approach in the 1970s at the University of Iowa. Between 1984 and 2008 (the MR imaging era), 298 patients with irreducible ventral compression of the brainstem and Chiari type 1 malformation underwent a transoral approach for ventral cervicomedullary decompression at the University of Iowa. The results have been excellent resulting in improved brainstem function and resolution of the Chiari malformation in the majority of patients.
The type of treatment needed for dogs diagnosed with CM/SM depends on the severity of the condition and the age of the dog. Young dogs with clinical signs should be considered for surgical removal to minimize the progression of the disease as the dog ages. Older dogs with little or no clinical signs may be treated medically, rather than surgically. However, severe cases of CM/SM may require surgery regardless of age. The goal of surgery is syrynx decompression through restoration of normal cerebrospinal fluid circulation.
The surgical treatment of CM in dogs is described as "foramen magnum decompression FMD". Despite an approximately 80% success rate with this surgical technique, there is a 25% to 50% relapse, primarily due to excessive scar tissue formation at the decompression site. A cranioplasty may be performed instead, in which a plate, constructed using titanium mesh and bone cement, is fixed to the back of the skull following a standard FMD procedure. The procedure had been effective in humans. The postoperative relapse rate associated with the titanium cranioplasty procedure is less than 7%.
There are several different surgical techniques for the removal of acoustic neuroma. The choice of approach is determined by size of the tumour, hearing capability, and general clinical condition of the patient.
- The retrosigmoid approach offers some opportunity for the retention of hearing.
- The translabyrinthine approach will sacrifice hearing on that side, but will usually spare the facial nerve. Post-operative cerebrospinal fluid leaks are more common.
- The middle fossa approach is preferred for small tumours, and offers the highest probability of retention of hearing and vestibular function.
- Less invasive endoscopic techniques have been done outside of the United States for some time. Recovery times are reported to be faster. However, this technique is not yet mainstream among surgeons in the US.
Larger tumors can be treated by either the translabyrinthine approach or the retrosigmoid approach, depending upon the experience of the surgical team. With large tumors, the chance of hearing preservation is small with any approach. When hearing is already poor, the translabyrinthine approach may be used for even small tumors. Small, lateralized tumours in patients with good hearing should have the middle fossa approach. When the location of the tumour is more medial a retrosigmoid approach may be better.
Auditory canal decompression is another surgical technique that can prolong usable hearing when a vestibular schwannoma has grown too large to remove without damage to the cochlear nerve. In the IAC (internal auditory canal) decompression, a middle fossa approach is employed to expose the bony roof of the IAC without any attempt to remove the tumor. The bone overlying the acoustic nerve is removed, allowing the tumour to expand upward into the middle cranial fossa. In this way, pressure on the cochlear nerve is relieved, reducing the risk of further hearing loss from direct compression or obstruction of vascular supply to the nerve.
Radiosurgery is a conservative alternative to cranial base or other intracranial surgery. With conformal radiosurgical techniques, therapeutic radiation focused on the tumour, sparing exposure to surrounding normal tissues. Although radiosurgery can seldom completely destroy a tumor, it can often arrest its growth or reduce its size. While radiation is less immediately damaging than conventional surgery, it incurs a higher risk of subsequent malignant change in the irradiated tissues, and this risk in higher in NF2 than in sporadic (non-NF2) lesions.
The evidence for the use of medical interventions for lumbar spinal stenosis is poor. Injectable but not nasal calcitonin may be useful for short term pain relief. Epidural blocks may also transiently decrease pain, but there is no evidence of long-term effect. Adding steroids to these injections does not improve the result; the use of epidural steroid injections (ESIs) is controversial and evidence of their efficacy is contradictory.
Non-steroidal anti-inflammatory drugs (NSAIDs), muscle relaxants and opioid analgesics are often used to treat low back pain, but evidence of their efficacy is lacking.
The effectiveness of non surgical treatments is unclear as they have not been well studied.
- Education about the course of the condition and how to relieve symptoms
- Medicines to relieve pain and inflammation, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs)
- Exercise, to maintain or achieve overall good health, aerobic exercise, such as riding a stationary bicycle, which allows for a forward lean, walking, or swimming can relieve symptoms
- Weight loss, to relieve symptoms and slow progression of the stenosis
- Physical therapy to support self-care. Also may give instructs on stretching and strength exercises that may lead to a decrease in pain and other symptoms.
- Lumbar epidural steroid or anesthetic injections have low quality evidence to support their use.
Treatment options are either surgical or non-surgical. Overall evidence is inconclusive whether non-surgical or surgical treatment is the better for lumbar spinal stenosis.
Nonoperative therapies and laminectomy are the standard treatment for LSS. A trial of conservative treatment is typically recommended. Individuals are generally advised to avoid stressing the lower back, particularly with the spine extended. A physical therapy program to provide core strengthening and aerobic conditioning may be recommended. Overall scientific evidence is inconclusive on whether conservative approach or a surgical treatment is better for lumbar spinal stenosis.
A 2009 clinical trial at Massachusetts General Hospital used the cancer drug Bevacizumab (commercial name: Avastin) to treat 10 patients with neurofibromatosis type II. The result was published in "The New England Journal of Medicine". Of the ten patients treated with bevacizumab, tumours shrank in 9 of them, with the median best response rate of 26%. Hearing improved in some of the patients, but improvements were not strongly correlated with tumour shrinkage. Bevacizumab works by cutting the blood supply to the tumours and thus depriving them of their growth vector. Side effects during the study included alanine aminotransferase, proteinuria, and hypertension (elevated blood pressure) among others. A separate trial, published in "The Neuro-oncology Journal", show 40% tumour reduction in the two patients with NF2, along with significant hearing improvement.
Overall the researchers believed that bevacizumab showed clinically significant effects on NF-2 patients. However, more research is needed before the full effects of bevacizumab can be established in NF-2 patients.
Pregnant mothers are advised to take folic acid supplements to reduce risk of iniencephaly by up to 70%. Pregnant mothers are also advised not to take antiepileptic drugs, diuretics, antihistamines, and sulfa drugs, all of which have been associated with increased risk for neural tube defects.
If there aren't neurological symptoms (such as difficulties moving, loss of sensation, confusion, etc.) and there is no evidence of pressure on the spinal cord, a conservative approach may be taken such as:
- Drugs, such as aspirin, without steroids to relieve inflammation
- Cervical traction, in which the neck is pulled along its length, thus relieving pressure on the spinal cord
- Using a neck collar or cervical-thoracic suit
If there is pressure on the spinal cord or life-threatening symptoms are present, surgery is recommended.
The tumor must be removed with as complete a surgical excision as possible. In nearly all cases, the ossicular chain must be included if recurrences are to be avoided. Due to the anatomic site of involvement, facial nerve paralysis and/or paresthesias may be seen or develop; this is probably due to mass effect rather than nerve invasion. In a few cases, reconstructive surgery may be required. Since this is a benign tumor, no radiation is required. Patients experience an excellent long term outcome, although recurrences can be seen (up to 15%), especially if the ossicular chain is not removed. Although controversial, metastases are not seen in this tumor. There are reports of disease in the neck lymph nodes, but these patients have also had other diseases or multiple surgeries, such that it may represent iatrogenic disease.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Although generally benign, the cyst must be removed if the patient exhibits difficulty in breathing or swallowing, or if the cyst is infected. Even if these symptoms are not present, the cyst may be removed to eliminate the chance of infection or development of a carcinoma, or for cosmetic reasons if there is unsightly protrusion from the neck.
Thyroid scans and thyroid function studies are ordered preoperatively; this is important to demonstrate that normally functioning thyroid tissue is in its usual area.
Surgical management options include the Sistrunk procedure, en bloc central neck dissection, suture-guided transhyoid pharyngotomy, and Koempel's supra-hyoid technique. Cystectomy is an inadequate approach.
The Sistrunk procedure is the surgical resection of the central portion of the hyoid bone along with a wide core of tissue from the midline area between the hyoid and foramen cecum. It involves excision not only of the cyst but also of the path's tract and branches, and removal of the central portion of the hyoid bone is indicated to ensure complete removal of the tract. The original Sistrunk papers (the "classic" procedure described in 1920, and the "modified" procedure described in 1928) are available on-line with a modern commentary.
In general, the procedure consists of three steps:
1. incision
2. resection of cyst and hyoid bone
3. drainage and closure
There are several versions of the Sistrunk procedure, including:
- "classic": excision of the center of the hyoid bone along with a thyroglossal duct cyst, removal of one-eighth inch diameter core of tongue muscle superior to the hyoid at a 45 degree angle up to the foramen cecum to include mucosa, removal of one-quarter inch of the center of the hyoid bone, closure of the cut ends of the hyoid bone, and placement of a drain.
- modified: dissection through the tongue base but not through the mucosa. The modified Sistrunk procedure is the procedure of choice in both primary and revision cases.
- hyoid cartilage division: In cases without mature ossification of the hyoid bone, the non-fused cartilage portion can be divided by monopolar Bovie electro-cauterization or scissors. There were no statistical differences between this modified Sistrunk and the conventional Sistrunk procedure.
The procedure is relatively safe. In a study of 35 pediatric patients, Maddalozzo et. al found no major complications, but did observe minor complications (6 patients presented with seroma and 4 patients with local wound infections). A more recent paper analyzed 24 research studies on different treatment complications of thyroglossal cyst, and reported a total minor complications rate of 6% for the Sistrunk operation (classical or modified) and simple cystectomy treatment modalities. The Sistrunk procedure also showed better outcomes concerning the rate of overall recurrence, i.e. has the lowest rate of recurrence.
Sistrunk procedure results in a 95% cure rate and 95–100% long-term survival.
Treatment of THS includes immunosuppressives such as corticosteroids (often prednisolone) or steroid-sparing agents (such as methotrexate or azathioprine).
Radiotherapy has also been proposed.
Since newborns with iniencephaly so rarely survive past childbirth, a standard treatment does not exist.
Treatment is focused on reducing stroke episodes and damage from a distending artery. Four treatment modalities have been reported in the treatment of vertebral artery dissection. The two main treatments involve medication: anticoagulation (using heparin and warfarin) and antiplatelet drugs (usually aspirin). More rarely, thrombolysis (medication that dissolves blood clots) may be administered, and occasionally obstruction may be treated with angioplasty and stenting. No randomized controlled trials have been performed to compare the different treatment modalities. Surgery is only used in exceptional cases.
Depending on the grade of the sarcoma, it is treated with surgery, chemotherapy and/or radiotherapy.