Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is usually supportive treatment, that is, treatment to reduce any symptoms rather than to cure the condition.
- Enucleation of the odontogenic cysts can help, but new lesions, infections and jaw deformity are usually a result.
- The severity of the basal-cell carcinoma determines the prognosis for most patients. BCCs rarely cause gross disfigurement, disability or death .
- Genetic counseling
The treatment of Muenke syndrome is focused on the correction of the abnormal skull shape and mirrors the treatment of coronal craniosynostosis. The abnormal growth patterns continue throughout the growing years; therefore, intervention, accurate diagnosis, and a customized, expertly carried-out treatment plan should be a primary concern. The treatment of Muenke syndrome is focused on correction of the abnormal skull shape and mirrors the treatment of non-syndromic coronal craniosynostosis. Although the timing of surgery can be highly individualized, surgical correction of the bicoronal craniosynostosis is most often done between 6 and 12 months of age. Surgery is usually performed through a scalp incision that lies concealed within the hair of the head. Your craniofacial surgeon will work in concert with a pediatric neurosurgeon in order to safely remove the bones of the skull. Then, the craniofacial surgeon reshapes and repositions those bones to give a more normal skull shape.
Café au lait spots can be removed with lasers. Results are variable as the spots are often not completely removed or can come back after treatment. Often, a test spot is treated first to help predict the likelihood of treatment success.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.
Treatment for Romano–Ward syndrome can "deal with" the imbalance between the right and left sides of the sympathetic nervous system which may play a role in the cause of this syndrome. The imbalance can be temporarily abolished with a left stellate ganglion block, which shorten the QT interval. If this is successful, surgical ganglionectomy can be performed as a permanent treatment.Ventricular dysrhythmia may be managed by beta-adrenergic blockade (propranolol)
There is currently no cure available. The epilepsy can be controlled by the use of one or more types of anticonvulsant medications. However, there are difficulties in ascertaining the levels and types of anticonvulsant medications needed to establish control, because AS is usually associated with having multiple varieties of seizures, rather than just the one as in normal cases of epilepsy. Many families use melatonin to promote sleep in a condition which often affects sleep patterns. Many individuals with Angelman syndrome sleep for a maximum of five hours at any one time. Mild laxatives are also used frequently to encourage regular bowel movements, and early intervention with physiotherapy is important to encourage joint mobility and prevent stiffening of the joints. Speech and Language Therapy is commonly employed to assist individuals with Angelman syndrome and their communication issues.
Those with the syndrome are generally happy and contented people who like human contact and play. People with AS exhibit a profound desire for personal interaction with others. Communication can be difficult at first, but as a child with AS develops, there is a definite character and ability to make themselves understood. People with AS tend to develop strong non-verbal skills to compensate for their limited use of speech. It is widely accepted that their understanding of communication directed to them is much larger than their ability to return conversation. Most affected people will not develop more than 5–10 words, if any at all.
Seizures are a consequence, but so is excessive laughter, which is a major hindrance to early diagnosis.
The most effective anti-epileptic medication for JME is valproic acid (Depakote). Women are often started on alternative medications due to valproic acid's high incidence of fetal malformations. Lamotrigine, levetiracetam, topiramate, and zonisamide are alternative anti-epileptic medications with less frequent incidence of pregnancy related complications, and they are often used first in females of childbearing age. Carbamazepine may aggravate primary generalized seizure disorders such as JME. Treatment is lifelong. Patients should be warned to avoid sleep deprivation.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
There is no known cure for microcephaly. Treatment is symptomatic and supportive.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
A cure does not exist for I-Cell disease/Mucolipidosis II disease. Treatment is limited to controlling or reducing the symptoms that are associated with this disorder. Nutritional supplements, particularly iron and vitamin B12, are often recommended for individuals with I-Cell disease. Physical therapy to improve motor delays and speech therapy to improve language acquisition are treatment options. Surgery can remove the thin layer of corneal clouding to temporarily improve the complication. It is possible that bone marrow transplant may be helpful in delaying or correcting the neurological deterioration that occurs with I-Cell disease.. Even though there is no existing treatment, the Yash Gandhi Foundation is a 501(c)(3) non-profit organization focused on funding research for I-Cell disease
Without treatment, persons with MEN2B die prematurely. Details are lacking, owing to the absence of formal studies, but it is generally assumed that death in the 30s is typical unless prophylactic thyroidectomy and surveillance for pheochromocytoma are performed (see below). The range is quite variable, however: death early in childhood can occur, and it is noteworthy that a few untreated persons have been diagnosed in their 50s. Recently, a larger experience with the disease "suggests that the prognosis in an individual patient may be better than previously considered."
Thyroidectomy is the mainstay of treatment, and should be performed without delay as soon as a diagnosis of MEN2B is made, even if no malignancy is detectable in the thyroid. Without thyroidectomy, almost all patients with MEN2B develop medullary thyroid cancer, in a more aggressive form than MEN 2A. The ideal age for surgery is 4 years old or younger, since cancer may metastasize before age 10.
Pheochromocytoma - a hormone secreting tumor of the adrenal glands - is also present in 50% of cases. Affected individuals are encouraged to get yearly screenings for thyroid and adrenal cancer.
Because prophylactic thyroidectomy improves survival, blood relatives of a person with MEN2B should be evaluated for MEN2B, even if lacking the typical signs and symptoms of the disorder.The mucosal neuromas of this syndrome are asymptomatic and self-limiting, and present no problem requiring treatment. They may, however, be surgically removed for aesthetic purposes or if they are being constantly traumatized.
Triple-A syndrome or AAA syndrome, also known as achalasia-addisonianism-alacrima syndrome or Allgrove syndrome, is a rare autosomal recessive congenital disorder. In most cases, there is no family history of it. The syndrome was first identified by Jeremy Allgrove and colleagues in 1978. The syndrome involves achalasia, addisonianism (adrenal insufficiency of primary type), and alacrima (insufficiency of tears). Alacrima is usually the earliest manifestation. It is a progressive disorder that can take years to develop the full blown clinical picture.
The standard treatment of COC is enucleation and curettage (E&C). Recurrence following E&C is rare.
Antiviral treatment has been tried with some success in a small number of patients.
Management depends on the symptoms displayed, for example, if the individual indicates muscular-skeletal pain then paracetamol may be administered. If the individual presents with ocular problems, then prednisone and cyclopentolate may be used for treatment, according to the WHO.
Because neither of the two thumb components is normal, a decision should be taken on combining which elements to create the best possible composite digit. Instead of amputating the most hypoplastic thumb, preservation of skin, nail, collateral ligaments and tendons is needed to augment the residual thumb. Surgery is recommended in the first year of life, generally between 9 and 15 months of age.
Surgical options depend on type of polydactyly.
Popliteal pterygium syndrome (PPS) is an inherited condition affecting the face, limbs, and genitalia. The syndrome goes by a number of names including the "popliteal web syndrome" and, more inclusively, the "facio-genito-popliteal syndrome". The term PPS was coined by Gorlin "et al.." in 1968 on the basis of the most unusual anomaly, the popliteal pterygium (a web behind the knee).
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
The severity of the symptoms associated with Angelman syndrome varies significantly across the population of those affected. Some speech and a greater degree of self-care are possible among the least profoundly affected. Walking and the use of simple sign language may be beyond the reach of the more profoundly affected. Early and continued participation in physical, occupational (related to the development of fine-motor control skills), and communication (speech) therapies are believed to significantly improve the prognosis (in the areas of cognition and communication) of individuals affected by AS. Further, the specific genetic mechanism underlying the condition is thought to correlate to the general prognosis of the affected person. On one end of the spectrum, a mutation to the UBE3A gene is thought to correlate to the least affected, whereas larger deletions on chromosome 15 are thought to correspond to the most affected.
The clinical features of Angelman syndrome alter with age. As adulthood approaches, hyperactivity and poor sleep patterns improve. The seizures decrease in frequency and often cease altogether and the EEG abnormalities are less obvious. Medication is typically advisable to those with seizure disorders. Often overlooked is the contribution of the poor sleep patterns to the frequency and/or severity of the seizures. Medication may be worthwhile to help deal with this issue and improve the prognosis with respect to seizures and sleep. Also noteworthy are the reports that the frequency and severity of seizures temporarily escalate in pubescent Angelman syndrome girls, but do not seem to affect long-term health.The facial features remain recognizable with age, but many adults with AS look remarkably youthful for their age.
Puberty and menstruation begin at around the average age. Sexual development is thought to be unaffected, as evidenced by a single reported case of a woman with Angelman syndrome conceiving a female child who also had Angelman syndrome.
The majority of those with AS achieve continence by day and some by night. Angelman syndrome is not a degenerative syndrome, and thus people with AS may improve their living skills with support.
Dressing skills are variable and usually limited to items of clothing without buttons or zippers. Most adults can eat with a knife or spoon and fork, and can learn to perform simple household tasks. General health is fairly good and life-span near average. Particular problems which have arisen in adults are a tendency to obesity (more in females), and worsening of scoliosis if it is present. The affectionate nature which is also a positive aspect in the younger children may also persist into adult life where it can pose a problem socially, but this problem is not insurmountable.
Diagnosis of NBCCS is made by having "2 major criteria" or "1 major" and "2 minor criteria".
The "major criteria" consist of the following:
1. more than 2 BCCs or 1 BCC in a person younger than 20 years;
2. odontogenic keratocysts of the jaw
3. 3 or more palmar or plantar pits
4. ectopic calcification or early (<20 years) calcification of the falx cerebri
5. bifid, fused, or splayed ribs
6. first-degree relative with NBCCS.
The "minor criteria" include the following:
1. macrocephaly.
2. congenital malformations, such as cleft lip or palate, frontal bossing, eye anomaly (cataract, coloboma, microphtalmia, nystagmus).
3. other skeletal abnormalities, such as Sprengel deformity, pectus deformity, polydactyly, syndactyly or hypertelorism.
4. radiologic abnormalities, such as bridging of the sella turcica, vertebral anomalies, modeling defects or flame-shaped lucencies of hands and feet.
5. ovarian and cardio fibroma or medulloblastoma (the latter is generally found in children below the age of two).
People with NBCCS need education about the syndrome, and may need counseling and support, as coping with the multiple BCCs and multiple surgeries is often difficult. They should reduce UV light exposure, to minimize the risk of BCCs. They should also be advised that receiving Radiation therapy for their skin cancers may be contraindicated. They should look for symptoms referable to other potentially involved systems: the CNS, the genitourinary system, the cardiovascular system, and dentition.
Genetic counseling is advised for prospective parents, since one parent with NBCCS causes a 50% chance that their child will also be affected.
In this situation there is an absence of osseous and ligamentous structures. The surgical technique is analogous to radial polydactyly, in which the level of duplication and anatomical components should guide operative treatment.
The pedicled ulnar extra digit can be removed by suture ligation to devise the skin bridge of the newborn child. This might be easier than an excision of the extra digit when the child is 6 to 12 months old. Ligation occludes the vascular supply to the duplicated digit, resulting in dry gangrene and subsequent autoamputation. This must be done with consideration of the presence of a neurovascular bundle, even in very small skin bridges. When the ligation is done inappropriately it can give a residual nubbin. Also, a neuroma can develop in the area of the scar. An excision can prevent the development of a residual nubbin and the sensibility due to a neuroma.
For infants with ulnar type B polydactyly the recommended treatment is ligation in the neonatal nursery. Studies have shown that excision of the extra digit in the neonatal nursery is a safe and simple procedure with a good clinical and cosmetic outcome.
Nevo Syndrome is a rare autosomal recessive disorder that usually begins during the later stages of pregnancy. Nevo Syndrome is caused by a NSD1 deletion, which encodes for methyltransferase involved with chromatin regulation. The exact mechanism as to how the chromatin is changed is unknown and still being studied. Nevo Syndrome is an example of one of about twelve overgrowth syndromes known today. Overgrowth syndromes are characterized with children experiencing a significant overgrowth during pregnancy and also excessive postnatal growth. Studies concerning Nevo Syndrome have shown a similar relation to Ehlers-Danlos syndrome, a connective tissue disorder. Nevo Syndrome is associated with kyphosis, an abnormal increased forward rounding of the spine, joint laxity, postpartum overgrowth, a highly arched palate, undescended testes in males, low-set ears, increased head circumference, among other symptoms.
3q29 microdeletion syndrome is a rare genetic disorder resulting from the deletion of a segment of chromosome 3. This syndrome was first described in 2005.