Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for all forms of this condition primarily relies on a low-protein diet, and depending on what variant of the disorder the individual suffers from, various dietary supplements. All variants respond to the levo isomer of carnitine as the improper breakdown of the affected substances results in sufferers developing a carnitine deficiency. The carnitine also assists in the removal of acyl-CoA, buildup of which is common in low-protein diets by converting it into acyl-carnitine which can be excreted in urine. Though not all forms of methylmalonyl acidemia are responsive to cobalamin, cyanocobalamin supplements are often used in first line treatment for this disorder. If the individual proves responsive to both cobalamin and carnitine supplements, then it may be possible for them to ingest substances that include small amounts of the problematic amino acids isoleucine, threonine, methionine, and valine without causing an attack.
A more extreme treatment includes kidney or liver transplant from a donor without the condition. The foreign organs will produce a functional version of the defective enzymes and digest the methylmalonic acid, however all of the disadvantages of organ transplantation are of course applicable in this situation. There is evidence to suggest that the central nervous system may metabolize methylmalonic-CoA in a system isolated from the rest of the body. If this is the case, transplantation may not reverse the neurological effects of methylmalonic acid previous to the transplant or prevent further damage to the brain by continued build up.
Patients with propionic acidemia should be started as early as possible on a low protein diet. In addition to a protein mixture that is devoid of methionine, threonine, valine, and isoleucine, the patient should also receive -carnitine treatment and should be given antibiotics 10 days per month in order to remove the intestinal propiogenic flora. The patient should have diet protocols prepared for him with a “well day diet” with low protein content, a “half emergency diet” containing half of the protein requirements, and an “emergency diet” with no protein content. These patients are under the risk of severe hyperammonemia during infections that can lead to comatose states.
Liver transplant is gaining a role in the management of these patients, with small series showing improved quality of life.
As with most other fatty acid oxidation disorders, individuals with MCADD need to avoid fasting for prolonged periods of time. During illnesses, they require careful management to stave off metabolic decompensation, which can result in death. Supplementation of simple carbohydrates or glucose during illness is key to prevent catabolism. The duration of fasting for individuals with MCADD varies with age, infants typically require frequent feedings or a slow release source of carbohydrates, such as uncooked cornstarch. Illnesses and other stresses can significantly reduce the fasting tolerance of affected individuals.
Individuals with MCADD should have an "emergency letter" that allows medical staff who are unfamiliar with the patient and the condition to administer correct treatment properly in the event of acute decompensation. This letter should outline the steps needed to intervene in a crisis and have contact information for specialists familiar with the individual's care.
Misdiagnosis issues
- The MCADD disorder is commonly mistaken for Reye Syndrome by pediatricians. Reye Syndrome is a severe disorder that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu.
- Most cases of Reye Syndrome are associated with the use of Aspirin during these viral infections.
During an acute hyperammonemic episode, oral proteins must be avoided and intravenous (I.V.) lipids, glucose and insulin (if needed) should be given to promote anabolism. I.V. nitrogen scavenging therapy (with sodium benzoate and/or sodium phenylacetate) should normalize ammonia levels, but if unsuccessful, hemodialysis is recommended. Long-term management involves dietary protein restriction as well as arginine supplementation. In those with frequent episodes of metabolic decompensation or with hyperammonemia even when following a protein-restricted diet, daily oral nitrogen scavenging therapy may be successful. Orthotopic liver transplantation offers long-term relief of hyperammonemia but does not seem to sufficiently correct neurological complications. Arterial hypertension can be treated by restoring nitric oxide deficiency
Dietary control may help limit progression of the neurological damage.
Administration of cytidine monophosphate and uridine monophosphate reduces urinary orotic acid and ameliorates the anemia.
Administration of uridine, which is converted to UMP, will bypass the metabolic block and provide the body with a source of pyrimidine.
Uridine triacetate is a drug approved by FDA to be used in the treatment of hereditary orotic aciduria.
The conversion of tryptophan to serotonin and other metabolites depends on vitamin B. If tryptophan catabolism has any impact on brain glutaric acid and other catabolite levels, vitamin B levels should be routinely assayed and normalized in the course of the treatment of GA1.
Other therapeutic interventions include:
- ethosuximide and other anticonvulsant drugs
- GHB receptor antagonist NCS-382
- GABA receptor modulators
- uridine
- acamprosate
- dopaminergic agents
- dextromethorphan
- glutamine
- antioxidants
- Lamotrigine
The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).
There is no treatment for MKD. But, the inflammation and the other effects can be reduced to a certain extent.
- IL-1 targeting drugs can be used to reduce the effects of the disorder. Anakinra is antagonist to IL-1 receptors. Anakinra binds the IL-1 receptor, preventing the actions of both IL-1α and IL-1β, and it has been proved to reduce the clinical and biochemical inflammation in MKD. It can effectively decreases the frequency as well as the severity of inflammatory attacks when used on a daily basis. Disadvantages with the usage of this drug are occurrence of painful injection site reaction and as the drug is discontinued in the near future the febrile attacks start. (Examined in a 12-year-old patient).
- Canakinumab is a long acting monoclonal antibody which is directed against IL-1β has shown to be effective in reducing both frequency and severity in patients suffering from mild and severe MKD in case reports and observational case series. It reduces the physiological effects but the biochemical parameter still remain elevated (Galeotti et al. demonstrated that it is more effective than anakinra –considered 6 patients suffering from MKD).
- Anti-TNF therapy might be effective in MKD, but the effect is mostly partial and therapy failure and clinical deterioration have been described frequently in patients on infliximab or etanercept. A beneficial effect of human monoclonal anti-TNFα antibody adalimumab was seen in a small number of MKD patients.
- Most MKD patients are benefited by anti-IL-1 therapy. However, anti-IL-1-resistant disease may also occur. Example. tocilizumab (a humanized monoclonal antibody against the interleukin-6 (IL-6) receptor). This drug is used when the patients are unresponsive towards Anakinra. (Shendi et al. treated a young woman in whom anakinra was ineffective with tocilizumab). It was found that it was effective in reducing the biochemical and clinical inflammation [30].Stoffels et al. observed reduction of frequency and severity of the inflammatory attacks, although after several months of treatment one of these two patients persistently showed mild inflammatory symptoms in the absence of biochemical inflammatory markers.
- A beneficial effect of hematopoietic stem cell transplantation can be used in severe mevalonate kinase deficiency conditions (Improvement of cerebral myelinisation on MRI after allogenic stem cell transplantation was observed in one girl). But, liver transplantation did not influence febrile attacks in this patient.
The GABA antagonist CGP-35348 (3-amino-propyl-(diethoxymethyl) phosphinic acid) has been used in Aldh5a1-/- mice with strong results. It has shown to reduce the frequency of absence seizures, though there have been some cases in which it worsened convulsive seizures.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
SR deficiency is currently being treated using a combination therapy of levodopa and carbidopa. These treatments are also used for individuals suffering from Parkinson's. The treatment is noninvasive and only requires the patient to take oral tablets 3 or 4 times a day, where the dosage of levodopa and carbidopa is determined by the severity of the symptoms. Levodopa is in a class of medications called central nervous system agents where its main function is to become dopamine in the brain. Carbidopa is in a class of medications called decarboxylase inhibitors and it works by preventing levodopa from being broken down before it reaches the brain. This treatment is effective in mitigating motor symptoms, but it does not totally eradicate them and it is not as effective on cognitive problems. Patients who have been diagnosed with SR deficiency and have undergone this treatment have shown improvements with most motor impairments including oculogyric crises, dystonia, balance, and coordination.
Due to the rarity of the disease, it is hard to estimate mortality rates or life expectancy. One 2003 study which followed 88 cases receiving two different kinds of treatment found that very few persons lived beyond age 20 and none beyond age 30.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency also referred to as HMG-CoA lyase deficiency or Hydroxymethylglutaric aciduria, is an uncommon inherited disorder in which the body cannot properly process the amino acid leucine. Additionally, the disorder prevents the body from making ketones, which are used for energy during fasting.
The signs and symptoms of this disorder typically appear in early childhood. Almost all affected children have delayed development. Additional signs and symptoms can include weak muscle tone (hypotonia), seizures, diarrhea, vomiting, and low blood sugar (hypoglycemia). A heart condition called cardiomyopathy, which weakens and enlarges the heart muscle, is another common feature of malonyl-CoA decarboxylase deficiency.
Some common symptoms in Malonyl-CoA decarboxylase deficiency, such as cardiomyopathy and metabolic acidosis, are triggered by the high concentrations of Malonyl-CoA in the cytoplasm. High level of Malonyl-CoA will inhibits β-oxidation of fatty acids through deactivating the carrier of fatty acyl group, CPT1, and thus, blocking fatty acids from going into the mitochondrial matrix for oxidation.
A research conducted in Netherlands has suggested that carnitine supplements and a low fat diet may help to reduce the level of malonic acid in our body.
Propionic acidemia, also known as propionic aciduria, propionyl-CoA carboxylase deficiency and ketotic glycinemia, is an autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.
The disorder presents in the early neonatal period with progressive encephalopathy. Death can occur quickly, due to secondary hyperammonemia, infection, cardiomyopathy, or basal ganglial stroke.
Propionic acidemia is a rare disorder that is inherited from both parents. Being autosomal recessive, neither parent shows symptoms, but both carry a defective gene responsible for this disease. It takes two faulty genes to cause PA, so there is a 1 in 4 chance for these parents to have a child with PA.
Urocanic aciduria, also called urocanate hydratase deficiency or urocanase deficiency, is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.
Urocanic aciduria is thought to be relatively benign. Although aggressive behavior and mental retardation have been reported with the disorder, no definitive neurometabolic connection has yet been established.
Organic acidemia, also called organic aciduria, is a term used to classify a group of metabolic disorders which disrupt normal amino acid metabolism, particularly branched-chain amino acids, causing a buildup of acids which are usually not present.
The branched-chain amino acids include isoleucine, leucine and valine. Organic acids refer to the amino acids and certain odd-chained fatty acids which are affected by these disorders.
The four main types of organic acidemia are: methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.