Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently there is no cure for these disorders. Medical care is directed at treating systemic conditions and improving the person's quality of life. Physical therapy and daily exercise may delay joint problems and improve the ability to move.
Changes to the diet will not prevent disease progression, but limiting milk, sugar, and dairy products has helped some individuals experiencing excessive mucus.
Surgery to remove tonsils and adenoids may improve breathing among affected individuals with obstructive airway disorders and sleep apnea. Sleep studies can assess airway status and the possible need for nighttime oxygen. Some patients may require surgical insertion of an endotrachial tube to aid breathing. Surgery can also correct hernias, help drain excessive cerebrospinal fluid from the brain, and free nerves and nerve roots compressed by skeletal and other abnormalities. Corneal transplants may improve vision among patients with significant corneal clouding.
Enzyme replacement therapy (ERT) are currently in use or are being tested. Enzyme replacement therapy has proven useful in reducing non-neurological symptoms and pain. Currently BioMarin Pharmaceutical produces enzyme replacement therapies for MPS type I and VI. Aldurazyme is an enzymatic replacement therapy for alpha-L-iduronidase produced by BioMarin for use in Type I MPS. In July 2006, the United States Food and Drug Administration approved a synthetic version of I2S produced by Shire Pharmaceuticals Group, called Elaprase, as a treatment for MPS type II (Hunter syndrome).
Bone marrow transplantation (BMT) and umbilical cord blood transplantation (UCBT) have had limited success in treating the mucopolysaccharidoses. Abnormal physical characteristics, except for those affecting the skeleton and eyes, may be improved, but neurologic outcomes have varied. BMT and UCBT are high-risk procedures and are usually performed only after family members receive extensive evaluation and counseling.
For information on clinical trials visit Clinical Trials Search
There is no cure for Pseudo-Hurler Polydystrophy/Mucolipidosis IIIA. Treatment is limited to controlling or reducing symptoms associated with this disorder. Physio-therapy, particularly hydrotherapy has proven effective at relieving muscle stiffness and increasing mobility. The use of crutches, a wheelchair or scooters are treatment options as the metabolic bone disease progresses. The insertion of rods in the spine to stabilize the vulnerable areas can treat scoliosis. Heart valve replacement surgery may be necessary as this disorder progresses.
Enzyme replacement therapies are currently in use. BioMarin Pharmaceutical provides therapeutics for mucopolysaccaradosis type I (MPS I), by manufacturing laronidase (Aldurazyme), commercialized by Genzyme. Enzyme replacement therapy has proven useful in reducing non-neurological symptoms and pain.
Bone marrow transplantation (BMT) and umbilical cord blood transplantation (UCBT) can be used as treatments for MPS. Abnormal physical characteristics, except for those affecting the skeleton and eyes, can be improved, and neurologic degeneration can often be halted. BMT and UCBT are high-risk procedures with high rates of morbidity and mortality. No cure for MPS I is known.
Treatment remains largely supportive. The behavioral disturbances of MPS-III respond poorly to medication. If an early diagnosis is made, bone marrow replacement may be beneficial. Although the missing enzyme can be manufactured and given intravenously, it cannot penetrate the blood–brain barrier and therefore cannot treat the neurological manifestations of the disease.
Along with many other lysosomal storage diseases, MPS-III exists as a model of a monogenetic disease involving the central nervous system.
Several promising therapies are in development. Gene therapy in particular is under Phase I/II clinical trial in France since October 2011 under the leadership of Paris-based biotechnology company Lysogene. Other potential therapies include chemical modification of deficient enzymes to allow them to penetrate the blood–brain barrier, stabilisation of abnormal but active enzyme to prevent its degradation, and implantation of stem cells strongly expressing the missing enzyme. For any future treatment to be successful, it must be administered as early as possible. Currently MPS-III is mainly diagnosed clinically, by which stage it is probably too late for any treatment to be very effective. Neonatal screening programs would provide the earliest possible diagnosis.
The flavonoid genistein decreases the pathological accumulation of glycosaminoglycans in Sanfilippo syndrome. "In vitro", animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by an adequate dose of genistein. Despite its reported beneficial properties, genistein also has toxic side effects.
Several support and research groups have been established to speed the development of new treatments for Sanfilippo syndrome.
Vestronidase alfa-vjbk (Mepsevii) is the only drug approved by U.S. Food and Drug Administration for the treatment of pediatric and adult patients.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Due to the nature of the illness, and absence of a really efficient treatment, it is important to emphasize the need for extensive palliative treatment against the diverse symptoms. Their objective is to reduce the effects of the deterioration of many bodily functions. In light of the diversity of symptoms, it is quite common to use a wide spectrum of palliative strategies where surgery and therapies are often pivotal.
For a long time, the most efficient approach had been to use bone marrow graft, or hematopoietic stem cell transplantation. They each have the advantage of providing a new source of the missing I2S. However, the results have been considered imperfect at best.
While this treatment alternative is able to improve or stop the progression of some of the so-called "physical" symptoms, it does not prevent the eventual cognitive regression that occurs in Hunter syndrome patients who are cognitively affected, although it may slow such regression early on. Therefore, for attenuated patients, this may still serve as a viable treatment option because of its more permanent nature, possibly even equivalent to weekly enzyme replacement therapy, resulting in much improved life expectancy.
However, even for attenuated patients, it is a major intervention with significant mortality risks and potential for life-threatening or altering complications such as graft-versus-host disease. For cognitively affected patients, without solving the challenge of cognitive regression, at best it is limited as a permanent treatment alternative. Because of all these reasons, bone marrow grafts or hematopoietic stem cell transplantation have seen a decrease in their application as Hunter syndrome treatment.
The treatment for Morquio syndrome consists of prenatal identification and of enzyme replacement therapy. On 12 February 2014, the US Food and Drug Administration approved the drug elosulfase alfa (Vimizim) for treating the disease.
A great deal of interest exists in treating MPS I with gene therapy. This approach has been taken with retroviral, lentiviral, adeno-associated virus, and even nonviral vectors to deliver the iduronidase gene. Successful treatments of the mouse, dog, and cat models of MPS I have occurred and may pave the way for future human trials.
MPS II, Hunter syndrome or iduronate sulfatase deficiency, is caused by lack of the enzyme iduronate sulfatase. Hunter syndrome has two clinical subtypes and (since it shows X-linked recessive inheritance) is the only one of the mucopolysaccharidoses in which the mother alone can pass the defective gene to a son. The incidence of Hunter syndrome is estimated to be 1 in 100,000 to 150,000 male births.
Pseudo-Hurler polydystrophy, also referred to as mucolipidosis III (ML III), is a lysosomal storage disease closely related to I-cell disease (ML II). This disorder is called Pseudo-Hurler because it resembles a mild form of Hurler syndrome, one of the mucopolysaccharide (MPS) diseases.
Sanfilippo syndrome, or mucopolysaccharidosis III (MPS-III) is a rare autosomal recessive lysosomal storage disease. It is caused by a deficiency in one of the enzymes needed to break down the glycosaminoglycan heparan sulfate (which is found in the extra-cellular matrix and on cell surface glycoproteins).
Although undegraded heparan sulfate is the primary stored substrate, glycolipids such as gangliosides are also stored despite no genetic defect in the enzymes associated with their breakdown.
The condition is named for Sylvester Sanfilippo, the pediatrician who first described the disease.
Sly syndrome, also called mucopolysaccharidosis type VII (MPS 7), is an autosomal recessive lysosomal storage disease characterized by a deficiency of the enzyme β-glucuronidase, a lysosomal enzyme. Sly syndrome belongs to a group of disorders known as mucopolysaccharidoses, which are lysosomal storage diseases. In Sly syndrome, the deficiency in β-glucuronidase leads to the accumulation of certain complex carbohydrates (mucopolysaccharides) in many tissues and organs of the body.
It was named after its discoverer William S. Sly, an American biochemist who has spent nearly his entire academic career at Saint Louis University.
Since Usher syndrome results from the loss of a gene, gene therapy that adds the proper protein back ("gene replacement") may alleviate it, provided the added protein becomes functional. Recent studies of mouse models have shown one form of the disease—that associated with a mutation in myosin VIIa—can be alleviated by replacing the mutant gene using a lentivirus. However, some of the mutated genes associated with Usher syndrome encode very large proteins—most notably, the "USH2A" and "GPR98" proteins, which have roughly 6000 amino-acid residues. Gene replacement therapy for such large proteins may be difficult.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
Children with Maroteaux–Lamy syndrome usually have normal intellectual development but share many of the physical symptoms found in Hurler syndrome. Caused by the deficient enzyme N-acetylgalactosamine 4-sulfatase, Maroteaux–Lamy syndrome has a variable spectrum of severe symptoms. Neurological complications include clouded corneas, deafness, thickening of the dura (the membrane that surrounds and protects the brain and spinal cord), and pain caused by compressed or traumatized nerves and nerve roots.
Signs are revealed early in the affected child's life, with one of the first symptoms often being a significantly prolonged age of learning how to walk. By age 10 children have developed a shortened trunk, crouched stance, and restricted joint movement. In more severe cases, children also develop a protruding abdomen and forward-curving spine. Skeletal changes (particularly in the pelvic region) are progressive and limit movement. Many children also have umbilical hernia or inguinal hernias. Nearly all children have some form of heart disease, usually involving valve dysfunction.
An enzyme replacement therapy, galsulfase (Naglazyme), was tested on patients with Maroteaux–Lamy syndrome and was successful in that it improved growth and joint movement. An experiment was then carried out to see whether an injection of the missing enzyme into the hips would help the range of motion and pain. At a cost of $365,000 a year, Naglazyme is one of the world's most expensive drugs.
Morquio syndrome (referred to as mucopolysaccharidosis IV, MPS IV, Morquio-Brailsford syndrome, or Morquio) is a rare metabolic disorder in which the body cannot process certain types of mucopolysaccharides. This birth defect, which is autosomal recessive, is thus a lysosomal storage disorder that is usually inherited. In the US, the incidence rate for Morquio is estimated at between 1 in 200,000 and 1 in 300,000 live births.
The build-up or elimination of mucopolysaccharides, rather than processing by their usual biochemical pathways, causes various symptoms. These involve accumulation of keratan sulfate.
Maroteaux–Lamy syndrome (also known as mucopolysaccharidosis type VI, MPS VI, or polydystrophic dwarfism) is a form of mucopolysaccharidosis caused by a deficiency in arylsulfatase B (ARSB). It is named after Pierre Maroteaux (1926–) and his mentor Maurice Emil Joseph Lamy (1895–1975), both French physicians.
Scheie syndrome (also known as "MPS I-S") is less severe version of Hurler syndrome. It is a condition characterized by corneal clouding, facial dysmorphism, and normal lifespan. People with this condition may have aortic regurgitation.
It is named after Harold Glendon Scheie (1909–1990), an American ophthalmologist.
Usher syndrome, also known as Hallgren syndrome, Usher-Hallgren syndrome, retinitis pigmentosa-dysacusis syndrome, or dystrophia retinae dysacusis syndrome, is an extremely rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is a leading cause of deafblindness and is at present incurable.
Usher syndrome is classed into three subtypes according to onset and severity of symptoms. All three subtypes are caused by mutations in genes involved in the function of the inner ear and retina. These mutations are inherited in an autosomal recessive pattern.
Massage therapy using trigger-point release techniques may be effective in short-term pain relief. Physical therapy involving gentle stretching and exercise is useful for recovering full range of motion and motor coordination. Once the trigger points are gone, muscle strengthening exercise can begin, supporting long-term health of the local muscle system.
Myofascial release, which involves gentle fascia manipulation and massage, may improve or remediate the condition.
A systematic review concluded that dry needling for the treatment of myofascial pain syndrome in the lower back appeared to be a useful adjunct to standard therapies, but that clear recommendations could not be made because the published studies were small and of low quality.
Posture evaluation and ergonomics may provide significant relief in the early stages of treatment. Movement therapies such as Alexander Technique and Feldenkrais Method may also be helpful.
Gentle, sustained stretching exercises within a comfortable range of motion have been shown to decrease pain thresholds. Regular, non-intense activity is also encouraged.
First-line treatment of AML consists primarily of chemotherapy, and is divided into two phases: induction and postremission (or consolidation) therapy. The goal of induction therapy is to achieve a complete remission by reducing the number of leukemic cells to an undetectable level; the goal of consolidation therapy is to eliminate any residual undetectable disease and achieve a cure. Hematopoietic stem cell transplantation is usually considered if induction chemotherapy fails or after a person relapses, although transplantation is also sometimes used as front-line therapy for people with high-risk disease. Efforts to use tyrosine kinase inhibitors in AML continue.
All FAB subtypes except M3 are usually given induction chemotherapy with cytarabine (ara-C) and an anthracycline (most often daunorubicin). This induction chemotherapy regimen is known as "7+3" (or "3+7"), because the cytarabine is given as a continuous IV infusion for seven consecutive days while the anthracycline is given for three consecutive days as an IV push. Up to 70% of people with AML will achieve a remission with this protocol. Other alternative induction regimens, including high-dose cytarabine alone, FLAG-like regimens or investigational agents, may also be used. Because of the toxic effects of therapy, including myelosuppression and an increased risk of infection, induction chemotherapy may not be offered to the very elderly, and the options may include less intense chemotherapy or palliative care.
The M3 subtype of AML, also known as acute promyelocytic leukemia (APL), is almost universally treated with the drug all-"trans"-retinoic acid (ATRA) in addition to induction chemotherapy, usually an anthracycline. Care must be taken to prevent disseminated intravascular coagulation (DIC), complicating the treatment of APL when the promyelocytes release the contents of their granules into the peripheral circulation. APL is eminently curable, with well-documented treatment protocols.
The goal of the induction phase is to reach a complete remission. Complete remission does not mean the disease has been cured; rather, it signifies no disease can be detected with available diagnostic methods. Complete remission is obtained in about 50%–75% of newly diagnosed adults, although this may vary based on the prognostic factors described above. The length of remission depends on the prognostic features of the original leukemia. In general, all remissions will fail without additional consolidation therapy.