Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
Symptomatic individuals should be seen by an orthopedist to assess the possibility of treatment (physiotherapy for muscular strengthening, cautious use of analgesic medications such as nonsteroidal anti-inflammatory drugs). Although there is no cure, surgery is sometimes used to relieve symptoms. Surgery may be necessary to treat malformation of the hip (osteotomy of the pelvis or the collum femoris) and, in some cases, malformation (e.g., genu varum or genu valgum). In some cases, total hip replacement may be necessary. However, surgery is not always necessary or appropriate.
Sports involving joint overload are to be avoided, while swimming or cycling are strongly suggested. Cycling has to be avoided in people having ligamentous laxity.
Weight control is suggested.
The use of crutches, other deambulatory aids or wheelchair is useful to prevent hip pain. Pain in the hand while writing can be avoided using a pen with wide grip.
The disorder is progressive, with the ultimate severity of symptoms often depending on age of onset. In severe cases amputation has been performed when conservative measures such as physical therapy and regional anesthetics have been ineffective.
There is currently no cure for pseudoachondroplasia. However, management of the various health problems that result from the disorder includes medications such as analgesics (painkillers) for joint discomfort, osteotomy for lower limb deformities, and the surgical treatment of scoliosis. Prevention of some related health problems includes physical therapy to preserve joint flexibility and regular examinations to detect degenerative joint disease and neurological manifestations (particularly spinal cord compression). Additionally, healthcare providers recommend treatment for psychosocial issues related to short stature and other physical deformities for both affected individuals and their families (OMIM 2008).
There is no known cure for achondroplasia even though the cause of the mutation in the growth factor receptor has been found. Although used by those without achondroplasia to aid in growth, human growth hormone does not help people with achondroplasia. However, if desired, the controversial surgery of limb-lengthening will lengthen the legs and arms of someone with achondroplasia.
Usually, the best results appear within the first and second year of therapy. After the second year of growth hormone therapy, beneficial bone growth decreases. Therefore, GH therapy is not a satisfactory long term treatment.
People with Pyle disease are often asymptomatic. Dental anomalies may require orthodontic interventions. Skeletal anomalies may require orthopedic surgery.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
There is no known treatment at present, although some investigators have tried to lessen the hypercalcemia with various forms of bisphosphonates.
There is no cure, although curative therapy with bone marrow transplantion is being investigated in clinical trials. It is believed the healthy marrow will provide the sufferer with cells from which osteoclasts will develop. If complications occur in children, patients can be treated with vitamin D. Gamma interferon has also been shown to be effective, and it can be associated to vitamin D. Erythropoetin has been used to treat any associated anemia. Corticosteroids may alleviate both the anemia and stimulate bone resorption. Fractures and osteomyelitis can be treated as usual. Treatment for osteopetrosis depends on the specific symptoms present and the severity in each person. Therefore, treatment options must be evaluated on an individual basis. Nutritional support is important to improve growth and it also enhances responsiveness to other treatment options. A calcium-deficient diet has been beneficial for some affected people.
Treatment is necessary for the infantile form:
- Vitamin D (calcitriol) appears to stimulate dormant osteoclasts, which stimulates bone resorption
- Gamma interferon can have long-term benefits. It improves white blood cell function (leading to fewer infections), decreases bone volume, and increases bone marrow volume.
- Erythropoietin can be used for anemia, and corticosteroids can be used for anemia and to stimulate bone resorption.
Bone marrow transplantation (BMT) improves some cases of severe, infantile osteopetrosis associated with bone marrow failure, and offers the best chance of longer-term survival for individuals with this type.
In pediatric (childhood) osteopetrosis, surgery is sometimes needed because of fractures. Adult osteopetrosis typically does not require treatment, but complications of the condition may require intervention. Surgery may be needed for aesthetic or functional reasons (such as multiple fractures, deformity, and loss of function), or for severe degenerative joint disease.
The long-term-outlook for people with osteopetrosis depends on the subtype and the severity of the condition in each person.The severe infantile forms of osteopetrosis are associated with shortened life expectancy, with most untreated children not surviving past their first decade. seems to have cured some infants with early-onset disease. However, the long-term prognosis after transplantation is unknown. For those with onset in childhood or adolescence, the effect of the condition depends on the specific symptoms (including how fragile the bones are and how much pain is present). Life expectancy in the adult-onset forms is normal.
The only effective line of treatment for malignant infantile osteopetrosis is hematopoietic stem cell transplantation. It has been shown to provide long-term disease-free periods for a significant percentage of those treated; can impact both hematologic and skeletal abnormalities; and has been used successfully to reverse the associated skeletal abnormalities.
Radiographs of at least one case with malignant infantile osteopetrosis have demonstrated bone remodeling and recanalization of medullar canals following hematopoietic stem cell transplantation. This favorable radiographic response could be expected within one year following the procedure - nevertheless, primary graft failure can prove fatal.
The fibrocartilaginous effects of fibrochondrogenesis on chondrocytes has shown potential as a means to produce therapeutic cellular biomaterials via tissue engineering and manipulation of stem cells, specifically human embryonic stem cells.
Utilization of these cells as curative cartilage replacement materials on the cellular level has shown promise, with beneficial applications including the repair and healing of damaged knee menisci and synovial joints; temporomandibular joints, and vertebra.
Non-surgical interventions include three elements: weight control, exercise control, and medication. Canine massage may alleviate discomfort and help move lymph and nutrients through the system. Weight control is often "the single most important thing that we can do to help a dog with arthritis", and consequentially "reducing the dog's weight is enough to control all of the symptoms of arthritis in many dogs". Reasonable exercise stimulates cartilage growth and reduces degeneration (though excessive exercise can do harm too), and also regular long walks in early or mild dysplasia can help prevent loss of muscle mass to the hips. Medication can reduce pain and discomfort, and also reduce damaging inflammation.
Non-surgical intervention is usually via a suitable non-steroidal anti-inflammatory drug (NSAID) which doubles as an anti-inflammatory and painkiller. Typical NSAIDs used for hip dysplasia include carprofen and meloxicam (often sold as Rimadyl and Metacam respectively), both used to treat arthritis resulting from dysplasia, although other NSAIDs such as tepoxalin (Zubrin) and prednoleucotropin ("PLT", a combination of cinchophen and prednisolone) are sometimes tried. NSAIDs vary dramatically between species as to effect: a safe NSAID in one species may be unsafe in another. It is important to follow veterinary advice.
A glucosamine-based nutritional supplement may give the body additional raw materials used in joint repair. Glucosamine can take 3–4 weeks to start showing its effects, so the trial period for medication is usually at least 3–5 weeks. In vitro, glucosamine has been shown to have negative effects on cartilage cells.
It is also common to try multiple anti-inflammatories over a further 4–6 week period, if necessary, since an animal will often respond to one type but fail to respond to another. If one anti-inflammatory does not work, a vet will often try one or two other brands for 2–3 weeks each, also in conjunction with ongoing glucosamine, before concluding that the condition does not seem responsive to medication.
Carprofen, and other anti-inflammatories in general, whilst very safe for most animals, can sometimes cause problems for some animals, and (in a few rare cases) sudden death through liver toxicity. This is most commonly discussed with carprofen but may be equally relevant with other anti-inflammatories. As a result, it is often recommended to perform monthly (or at least, twice-annually) blood tests to confirm that the animal is not reacting adversely to the medications. Such side effects are rare but worth being aware of, especially if long-term use is anticipated.
This regimen can usually be maintained for the long term, as long as it is effective in keeping the symptoms of dysplasia at bay.
Some attempts have been made to treat the pain caused by arthritic changes through the use of "laser therapy", in particular "class IV laser therapy". Well-controlled clinical trials are unfortunately lacking, and much of the evidence for these procedures remains anecdotal.
Osteofibrous dysplasia is treated with marginal resection with or without bone grafting, depending on the size of the lesion and the extent of bony involvement. However, due to the high rate of recurrence in skeletally immature individuals, this procedure is usually postponed until skeletal maturity.
Mesenchymal stem cells (MSCs) have been used for a number of years to treat osteoarthritis. Their use has mostly been autologous (self); used fresh (in the form of a mixed cell population mainly sourced from adipose tissue), or expanded in number via culture; or allogeneic (non-self). The majority of their action via a paracrine effect, and hence the route of administration has been mostly via intra-articular injection. In vitro, this paracrine effect has been shown to enhance type II collagen expression in OA chondrocytes while decreasing matrix metalloproteinase activity (MMP-3 and MMP-13). In clinical cases, this has been shown via their anti-inflammatory/pain relieving effects. Dogs treated with adipose derived stem cell therapy have had significantly improved scores for lameness and compiled scores for pain and range of motion compared with control dogs. Other randomised studies have shown similar improved results with functional limitation, range of motion, and owner and veterinary investigator visual analogue scale for pain all showing improvement. Beyond this, significant improvements in MSC treated animals as measured by peak vertical force and vertical impulse in force platform have been observed.
Patient-side autologous therapy in the US is subject to change. New guidance issued (FDA#218 Guidance for Industry - Cell-Based Products for Animal Use) will likely require stem cell therapy to be produced via cGMP. Resources required to implement these changes may change the US veterinary stem cell industry more towards a hub and spoke approach or towards allogeneic therapy, and away from patient-side therapy.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Acromicric dysplasia is an extremely rare inherited disorder characterized by abnormally short hands and feet, growth retardation and delayed bone maturation leading to short stature. Most cases have occurred randomly for no apparent reason (sporadically). However, autosomal dominant inheritance has not been ruled out.
According to the disease database, Acromicric dysplasia is synonymous with Geleophysic dysplasia
(or Geleophysic Dwarfism) and Focal mucopolysaccharidosis.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
Gerodermia osteodysplastica (GO), also called geroderma osteodysplasticum and Walt Disney dwarfism, is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.
Usage of the name "Walt Disney dwarfism" is attributed to the first known case of the disorder, documented in a 1950 journal report, in which the authors described five affected members from a Swiss family as having the physical appearance of dwarves from a Walt Disney film.
The terms "geroderma" or "gerodermia" can be used interchangeably with "osteodysplastica" or "osteodysplasticum", with the term "hereditaria" sometimes appearing at the end.
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
Conservative therapies include NSAIDs, pain medication, weight management and exercise restriction. The problems with these therapies is that they do not work well, especially long-term.
Ellis–van Creveld Syndrome (also called "chondroectodermal dysplasia" or "mesoectodermal dysplasia" but see 'Nomenclature' section below) is a rare genetic disorder of the skeletal dysplasia type.
Acro–dermato–ungual–lacrimal–tooth (ADULT) syndrome is a rare genetic disease. ADULT syndrome is an autosomal dominant form of ectodermal dysplasia, a group of disorders that affects the hair, teeth, nails, sweat glands, and extremities. The syndrome arises from a mutation in the TP63 gene. This disease was previously thought to be a form of ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC), but was classified as a different disease in 1993 by Propping and Zerres.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.