Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because HFM is a rare disorder, there are no studies that define its optimal treatment. Correction of the systemic folate deficiency, with the normalization of folate blood levels, is easily achieved with high doses of oral folates or much smaller doses of parenteral folate. This will rapidly correct the anemia, immune deficiency and GI signs. The challenge is to achieve adequate treatment of the neurological component of HFM. It is essential that the folate dose is sufficiently high to achieve CSF folate levels as close as possible to the normal range for the age of the child. This requires close monitoring of the CSF folate level. The physiological folate is 5-methyltetrahydrofolate but the oral formulation available is insufficient for treatment of this disorder and a parenteral form is not available. The optimal folate at this time is 5-formyltetrahydrofolate which, after administration, is converted to 5-methyltetrahydrofolate. The racemic mixture of 5-formyltetrahydrofolate (leucovorin) is generally available; the active S-isomer, levoleucovorin, may be obtained as well. Parenteral administration is the optimal treatment if that is possible. Folic acid should not be used for the treatment of HFM. Folic acid is not a physiological folate. It binds tightly to, and may impede, FRα-mediated endocytosis which plays an important role in the transport of folates across the choroid plexus into the CSF (see above). For a further consideration of treatment see GeneReviews.
The first line of treatment are corticosteroids and other medicines used to suppress the immune system such as tacrolimus and sirolimus.
A intravenous nutrition such as total parenteral nutrition and/or a special diet may be necessary. Hematopoietic stem cell transplantation may be curative.
No specific treatment or cure exists. Affected children usually need total parenteral nutrition through a central venous catheter. Further worsening of liver damage should however be avoided if possible. Diarrhea will likely continue even though food stops passing through the gastrointestinal system. They can subsequently be managed with tube feeding, and some may be weaned from nutritional support during adolescence.
The treatment of BLS follows two basic principles. When a patient presents with symptoms of BLS, the treating physician basically has two recognized options for management:
- Test-and-treat
- Treat empirically
Prevention focuses on improving sanitation of water and food sources.
Treatment focuses on addressing the central components of intestinal inflammation, bacterial overgrowth and nutritional supplementation.
The "treat empirically" route also has its difficulties, which have all come under wide debate and study. Recommendations are varied but seem to find some common ground around the notion that treatment should be individualized to the specific circumstances under which a patient has developed BLS since these circumstances affect the complex microbial make up of the affected bowel.
Tetracyclines have been the mainstay of treatment for BLS, but recent studies have concluded Rifaximin to be very effective in the treatment of BLS. One study by Di Stefano et al., however, concluded Metronidazole to be more effective than Rifaximin in the treatment of BLS.
Treatment of LPI consists of protein-restricted diet and supplementation with oral citrulline. Citrulline is a neutral amino acid that improves the function of the urea cycle and allows sufficient protein intake without hyperammonemia. Under proper dietary control and supplementation, the majority of the LPI patients are able to have a nearly normal life. However, severe complications including pulmonary alveolar proteinosis and renal insufficiency may develop even with proper treatment.
Fertility appears to be normal in women, but mothers with LPI have an increased risk for complications during pregnancy and delivery.
Treatment is directed largely towards management of underlying cause:
- Replacement of nutrients, electrolytes and fluid may be necessary. In severe deficiency, hospital admission may be required for nutritional support and detailed advice from dietitians. Use of enteral nutrition by naso-gastric or other feeding tubes may be able to provide sufficient nutritional supplementation. Tube placement may also be done by percutaneous endoscopic gastrostomy, or surgical jejunostomy. In patients whose intestinal absorptive surface is severely limited from disease or surgery, long term total parenteral nutrition may be needed.
- Pancreatic enzymes are supplemented orally in pancreatic insufficiency.
- Dietary modification is important in some conditions:
- Gluten-free diet in coeliac disease.
- Lactose avoidance in lactose intolerance.
- Antibiotic therapy to treat Small Bowel Bacterial overgrowth.
- Cholestyramine or other bile acid sequestrants will help reducing diarrhoea in bile acid malabsorption.
The conversion of tryptophan to serotonin and other metabolites depends on vitamin B. If tryptophan catabolism has any impact on brain glutaric acid and other catabolite levels, vitamin B levels should be routinely assayed and normalized in the course of the treatment of GA1.
Treatment of LPLD has two different objectives: immediate prevention of pancreatitis attacks and long term reduction of cardiovascular disease risk. Treatment is mainly based on medical nutrition therapy to maintain plasma triglyceride concentration below 11,3 mmol/L (1000 mg/dL). Maintenance of triglyceride levels below 22,6 mmol/L (2000 mg/dL) prevents in general from recurrent abdominal pain.
Strict low fat diet and avoidance of simple carbohydrates
Restriction of dietary fat to not more than 20 g/day or 15% of the total energy intake is usually sufficient to reduce plasma triglyceride concentration, although many patients report that to be symptom free a limit of less than 10g/day is optimal. Simple carbohydrates should be avoided as well. Medium-chain triglycerides can be used for cooking, because they are absorbed into the portal vein without becoming incorporated into chylomicrons. Fat-soluble vitamins A, D, E, and K, and minerals should be supplemented in patients with recurrent pancreatitis since they often have deficiencies as a result of malabsorption of fat. However, the diet approach is difficult to sustain for many of the patients.
Lipid lowering drugs
Lipid-lowering agents such as fibrates and omega-3-fatty acids can be used to lower TG levels in LPLD, however those drugs are very often not effective enough to reach treatment goals in LPLD patients. Statins should be considered to lower elevated non-HDL-Cholesterol.
Additional measures are avoidance of agents known to increase endogenous triglyceride levels, such as alcohol, estrogens, diuretics, isotretinoin, anidepressants (e.g. sertraline) and b-adrenergic blocking agents.
Gene therapy
In 2012, the European Commission approved alipogene tiparvovec (Glybera), a gene therapy for adults diagnosed with familial LPLD (confirmed by genetic testing) and suffering from severe or multiple pancreatitis attacks despite dietary fat restrictions. It was the first gene therapy to receive marketing authorization in Europe; it was priced at about $1 million per treatment, and as of 2016, only one person had been treated with it.
Patients with PDE do not respond to anticonvulsant medications, but seizures rapidly cease with therapeutic intravenous doses of Vitamin B6 and remission from seizures are often maintained on daily therapeutic doses of Vitamin B6. An optimal dose has not yet been established, but doses of 50–100 mg/day or 15–30 mg/kg/day have been proposed. Importantly, excessive doses of vitamin B6 can result in irreversible neurological damage, and therefore several guidelines recommend 500 mg per day as the maximal daily dose.
Despite remission of seizure activity with vitamin B6 supplementation, intellectual disability is frequently seen in patients with PDE. Because the affected enzyme antiquitin is involved in the cerebral lysine degradation pathway, lysine restriction as an additional treatment modality has recently been explored. Studies have been published which demonstrate potential for improved biomarkers, development, and behavior in patients treated with lysine restriction in addition to pyridoxine supplementation. In trial, lysine restriction of 70–100 mg/kg/day in children less than 1 year of age, 45–80 mg/kg/day in children between 1–7 years of age, and 20–45 mg/kg/day in children older than 7 years of age were prescribed. Despite the potential of additional benefit from lysine restriction, vitamin B6 supplementation remains the main-stay of treatment given lack of studies thus far demonstrating the safety and efficacy of lysine restriction for this purpose.
Symptoms of short bowel syndrome are usually addressed with medication. These include:
- Anti-diarrheal medicine (e.g. loperamide, codeine)
- Vitamin, mineral supplements and L-glutamine powder mixed with water
- H2 blocker and proton pump inhibitors to reduce stomach acid
- Lactase supplement (to improve the bloating and diarrhoea associated with lactose intolerance)
In 2004, the USFDA approved a therapy that reduces the frequency and volume of total parenteral nutrition (TPN), comprising: NutreStore (oral solution of glutamine) and Zorbtive (growth hormone, of recombinant DNA origin, for injection) together with a specialized oral diet. In 2012, an advisory panel to the USFDA voted unanimously to approve for treatment of SBS the agent teduglutide, a glucagon-like peptide-2 analog developed by NPS Pharmaceuticals, who intend to market the agent in the United States under the brandname Gattex. Teduglutide had been previously approved for use in Europe and is marketed under the brand Revestive by Nycomed.
Surgical procedures to lengthen dilated bowel include the Bianchi procedure, where the bowel is cut in half and one end is sewn to the other, and a newer procedure called serial transverse enteroplasty (STEP), where the bowel is cut and stapled in a zigzag pattern. Heung Bae Kim, MD, and Tom Jaksic, MD, both of Children's Hospital Boston, devised the STEP procedure in the early 2000s. The procedure lengthens the bowel of children with SBS and may allow children to avoid the need for intestinal transplantation. As of June 2009, Kim and Jaksic have performed 18 STEP procedures. The Bianchi and STEP procedures are usually performed by pediatric surgeons at quaternary hospitals who specialize in small bowel surgery.
There are multiple large-field, multi-country research initiatives focusing on strategies to prevent and treat EE.
- The MAL-ED project
- The Alive and Thrive nutrition project
- The Sanitation, Hygiene and Infant Nutrition Efficacy (SHINE) Trial (ClinicalTrials.gov identifier: NCT01824940)
- The WASH Benefits Study
Bile acid sequestrants are the main agents used to treat bile acid malabsorption. Cholestyramine and colestipol, both in powder form, have been used for many years. Unfortunately many patients find them difficult to tolerate; although the diarrhea may improve, other symptoms such as pain and bloating may worsen. Colesevelam is a tablet and some patients tolerate this more easily. A proof of concept study of the farnesoid X receptor agonist obeticholic acid has shown clinical and biochemical benefit.
As of March 15, 2016, Novartis Pharmaceuticals is conducting a phase II clinical study involving a farnesoid X receptor agonist named LJN452.
There is no known cure, but an appropriate diet and the enzyme xylose isomerase can help. The ingestion of glucose simultaneously with fructose improves fructose absorption and may prevent the development of symptoms. For example, people may tolerate fruits such as grapefruits or bananas, which contain similar amounts of fructose and glucose, but apples are not tolerated because they contain high levels of fructose and lower levels of glucose.
Courses of treatment for children with is dependent upon the severity of their case. Children with OHS often receive physical and occupational therapy. They may require a feeding tube to supplement nourishment if they are not growing enough. In an attempt to improve the neurological condition (seizures) copper histidine or copper chloride injections can be given early in the child’s life.
However, copper histidine injections have been shown ineffective in studies of copper metabolic-connective tissue disorders such as OHS.
Xylose isomerase acts to convert fructose sugars into glucose. Dietary supplements of xylose isomerase may improve the symptoms of fructose malabsorption.
Treatment is primarily through diet. Dietary fiber and fat can be increased and fluid intake, especially fruit juice intake, decreased. With these considerations, the patient should consume a normal balanced diet to avoid malnutrition or growth restriction. Medications such as loperamide should not be used. Studies have shown that certain probiotic preparations such as "Lactobacillus rhamnosus" (a bacterium) and "Saccharomyces boulardii" (a yeast) may be effective at reducing symptoms.
Dietary control may help limit progression of the neurological damage.
While there is no cure for JBS, treatment and management of specific symptoms and features of the disorder are applied and can often be successful. Variability in the severity of JBS on a case-by-case basis determines the requirements and effectiveness of any treatment selected.
Pancreatic insufficiency and malabsorption can be managed with pancreatic enzyme replacement therapy, such as pancrelipase supplementation and other related methods.
Craniofacial and skeletal deformities may require surgical correction, using techniques including bone grafts and osteotomy procedures. Sensorineural hearing loss can be managed with the use of hearing aids and educational services designated for the hearing impaired.
Special education, specialized counseling methods and occupational therapy designed for those with mental retardation have proven to be effective, for both the patient and their families. This, too, is carefully considered for JBS patients.
Autoimmune polyendocrine syndrome type 1 treatment is based on the symptoms that are presented by the affected individual, additionally there is:
- Hormone replacement
- Systemic antifungal treatment
- Immunosuppressive treatment
Corticosteroids are the mainstay of therapy with a 90% response rate in some studies. Appropriate duration of steroid treatment is unknown and relapse often necessitates long term treatment. Various steroid sparing agents e.g. sodium cromoglycate (a stabilizer of mast cell membranes), ketotifen (an antihistamine), and montelukast (a selective, competitive leukotriene receptor antagonist) have been proposed, centering on an allergic hypothesis, with mixed results. An elimination diet may be successful if a limited number of food allergies are identified.
Bacterial overgrowth is usually treated with a course of antibiotics although whether antibiotics should be a first line treatment is a matter of debate. Some experts recommend probiotics as first line therapy with antibiotics being reserved as a second line treatment for more severe cases of SIBO. Prokinetic drugs are other options but research in humans is limited. A variety of antibiotics, including tetracycline, amoxicillin-clavulanate, fluoroquinolones, metronidazole, neomycin, cephalexin, trimethoprim-sulfamethoxazole, and nitazoxanide have been used; however, the best evidence is for the use of rifaximin.
A course of one week of antibiotics is usually sufficient to treat the condition. However, if the condition recurs, antibiotics can be given in a cyclical fashion in order to prevent tolerance. For example, antibiotics may be given for a week, followed by three weeks off antibiotics, followed by another week of treatment. Alternatively, the choice of antibiotic used can be cycled.
The condition that predisposed the patient to bacterial overgrowth should also be treated. For example, if the bacterial overgrowth is caused by chronic pancreatitis, the patient should be treated with coated pancreatic enzyme supplements.
Probiotics are bacterial preparations that alter the bacterial flora in the bowel to cause a beneficial effect. Animal research has demonstrated that probiotics have barrier enhancing, antibacterial, immune modulating and anti-inflammatory effects which may have a positive effect in the management of SIBO in humans. "Lactobacillus casei" has been found to be effective in improving breath hydrogen scores after 6 weeks of treatment presumably by suppressing levels of a small intestinal bacterial overgrowth of fermenting bacteria. The multi-strain preparation VSL#3 was found to be effective in suppressing SIBO. "Lactobacillus plantarum", "Lactobacillus acidophilus", and "Lactobacillus casei" have all demonstrated effectiveness in the treatment and management of SIBO. Conversely, "Lactobacillus fermentum" and "Saccharomyces boulardii" have been found to be ineffective. A combination of "Lactobacillus plantarum" and "Lactobacillus rhamnosus" has been found to be effective in suppressing bacterial overgrowth of abnormal gas producing organisms in the small intestine.
Probiotics are superior to antibiotics in the treatment of SIBO. A combination of probiotic strains has been found to produce better results than therapy with the antibiotic drug metronidazole and probiotics have been found to be effective in treating and preventing secondary lactase deficiency and small intestinal bacteria overgrowth in individuals suffering from post-infectious irritable bowel syndrome. Probiotics taken in uncomplicated cases of SIBO can usually result in the individual becoming symptom free. Probiotic therapy may need to be taken continuously to prevent the return of overgrowth of gas producing bacteria. A study by the probiotic yogurt producer Nestlé found that probiotic yogurt may also be effective in treating SIBO with evidence of reduced inflammation after 4 weeks of treatment.
An elemental diet taken for two weeks is an alternative to antibiotics for eliminating SIBO. An elemental diet works via providing nutrition for the individual while depriving the bacteria of a food source. Additional treatment options include the use of prokinetic drugs such as 5-HT4 receptor agonists or motilin agonists to extend the SIBO free period after treatment with an elemental diet or antibiotics. A diet void of certain foods that feed the bacteria can help alleviate the symptoms. For example, if the symptoms are caused by bacterial overgrowth feeding on indigestible carbohydrate rich foods, following a FODMAP restriction diet may help.
As with most other fatty acid oxidation disorders, individuals with MCADD need to avoid fasting for prolonged periods of time. During illnesses, they require careful management to stave off metabolic decompensation, which can result in death. Supplementation of simple carbohydrates or glucose during illness is key to prevent catabolism. The duration of fasting for individuals with MCADD varies with age, infants typically require frequent feedings or a slow release source of carbohydrates, such as uncooked cornstarch. Illnesses and other stresses can significantly reduce the fasting tolerance of affected individuals.
Individuals with MCADD should have an "emergency letter" that allows medical staff who are unfamiliar with the patient and the condition to administer correct treatment properly in the event of acute decompensation. This letter should outline the steps needed to intervene in a crisis and have contact information for specialists familiar with the individual's care.
Misdiagnosis issues
- The MCADD disorder is commonly mistaken for Reye Syndrome by pediatricians. Reye Syndrome is a severe disorder that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu.
- Most cases of Reye Syndrome are associated with the use of Aspirin during these viral infections.
Plasma and cerebrospinal fluid levels of pipecolic acid are frequently elevated in patients with PDE, though it is a non-specific biomarker. α-aminodipic semialdehyde is elevated in urine and plasma and is a more specific biomarker for PDE. Improvements in these biomarkers have been reported with the implementation of a lysine-restricted diet. Initial studies evaluating the safety and efficacy of lysine restriction evaluated developmental and cognitive outcomes by age-appropriate tests and parental observations.