Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment is targeted to the underlying cause. However, most vasculitis in general are treated with steroids (e.g. methylprednisolone) because the underlying cause of the vasculitis is due to hyperactive immunological damage. Immunosuppressants such as cyclophosphamide and azathioprine may also be given.
A systematic review of antineutrophil cytoplasmic antibody (ANCA) positive vasculitis identified best treatments depending on whether the goal is to induce remission or maintenance and depending on severity of the vasculitis.
Treatment should be directed towards the specific underlying cause of the vasculitis. If no underlying cause is found and the vasculitis is truly limited to the skin then treatment is primarily supportive. Such treatment involves measures such as leg elevation, stockings, and topical steroids to relieve itching/burning. If the vasculitis does not self-resolve within 3–4 weeks, more aggressive treatment may be warranted. Oral colchicine or dapsone are often used for this purpose. If rapid control of symptoms is needed, a short course of high-dose oral steroids may be given. Immunosuppressive agents such as methotrexate and azathioprine may be used in truly refractory cases not responsive to colchicine or dapsone.
The standard treatment for GPA is cyclophosphamide and high dose corticosteroids for remission induction and less toxic immunosuppressants like azathioprine, leflunomide, methotrexate or mycophenolate mofetil. Trimethoprim/sulfamethoxazole may also help prevent relapse. Rituximab may be substituted for cyclophosphamide in inducing remission.
A systematic review of 84 trials examined the evidence for various treatments in GPA. Many trials include data on pooled groups of people with GPA and microscopic polyangiitis. In this review, cases are divided between localised disease, non-organ threatening, generalized organ-threatening disease and severe kidney vasculitis and immediately life-threatening disease.
- In generalised non-organ-threatening disease, remission can be induced with methotrexate and steroids, where the steroid dose is reduced after a remission has been achieved and methotrexate used as maintenance.
- In case of organ-threatening disease, pulsed intravenous cyclophosphamide with steroids is recommended. Once remission has been achieved, azathioprine and steroids can be used to maintain remission.
- In severe kidney vasculitis, the same regimen is used but with the addition of plasma exchange.
- In pulmonary haemorrhage, high doses of cyclophosphamide with pulsed methylprednisolone may be used, or alternatively CYC, steroids, and plasma exchange.
Therapy for GPA and MPA has two main components: induction of remission with initial immunosuppressive therapy, and maintenance of remission with immunosuppressive therapy for a variable period to prevent relapse.
The mainstay of treatment for granulomatosis with polyangiitis (GPA) is a combination of corticosteroids and cytotoxic agents.
- Medications
- Side effect treatments
- Plasma exchange
- Kidney transplant
Treatment for eosinophilic granulomatosis with polyangiitis includes glucocorticoids (such as prednisolone) and other immunosuppressive drugs (such as azathioprine and cyclophosphamide). In many cases, the disease can be put into a type of chemical remission through drug therapy, but the disease is chronic and lifelong.
A systematic review conducted in 2007 indicated all patients should be treated with high-dose steroids, but in patients with a five-factor score of one or higher, cyclophosphamide pulse therapy should be commenced, with 12 pulses leading to fewer relapses than six. Remission can be maintained with a less toxic drug, such as azathioprine or methotrexate.
On December 12, 2017, the FDA approved mepolizumab, the first drug therapy specifically indicated for the treatment of eosinophilic granulomatosis with polyangiitis. Patients taking mepolizumab experienced a "significant improvement" in their symptoms.
People affected by the severest, often life-threatening, complications of cryoglobulinemic disease require urgent plasmapharesis and/or plasma exchange in order to rapidly reduce the circulating levels of their cryoglobulins. Complications commonly requiring this intervention include: hyperviscosity disease with severe symptoms of neurological (e.g. stroke, mental impairment, and myelitis) and/or cardiovascular (e.g., congestive heart failure, myocardial infarction) disturbances; vasculitis-driven intestinal ischemia, intestinal perforation, cholecystitis, or pancreatitis, causing acute abdominal pain, general malaise, fever, and/or bloody bowel movements; vasculitis-driven pulmonary disturbances (e.g. coughing up blood, acute respiratory failure, X-ray evidence of diffuse pulmonary infiltrates caused by diffuse alveolar hemorrhage); and severe kidney dysfunction due to intravascular deposition of immunoglobulins or vasculitis. Along with this urgent treatment, severely symptomatic patients are commonly started on therapy to treat any underlying disease; this treatment is often supplemented with anti-inflammatory drugs such as corticosteroids (e.g., dexamethasone) and/or immunosuppressive drugs. Cases where no underlying disease is known are also often treated with the latter corticosteroid and immunosuppressive medications.
Treatment of secondary cryofibrinoginemic disease may use the same methods used for treating the primary disease wherever necessary but focus on treating the associated infectious, malignant, premalignant, vasculitis, or autoimmune disorder with the methods prescribed for the associated disorder. Case report studies suggest that: corticosteroids and immunosuppressive drug regimens, antimicrobial therapy, and anti-neoplastic regimens can be effective treatments for controlling the cryfibrinoginemic disease in cases associated respectively with autoimmune, infectious, and premalignant/malignant disorders.
Studies on the treatment of cryofibrinoginemic disease have involved relatively few patients, are limited primarily to case reports, and differ based on whether the disease is primary or secondary. In all cases of cryofibrinogenemic disease, however, patients should avoid the exposure of afflicted body parts to cold weather or other environmental triggers of symptoms and avoid using cigarettes or other tobacco products. In severe cases, these individuals also risk developing serious thrombotic events which lead to tissue necrosis that may result in secondary bacterial infections and require intensive antimicrobial therapy and/or amputations. Careful treatment of these developments is required.
Treatments are generally directed toward stopping the inflammation and suppressing the immune system. Typically, corticosteroids such as prednisone are used. Additionally, other immune suppression drugs, such as cyclophosphamide and others, are considered. In case of an infection, antimicrobial agents including cephalexin may be prescribed. Affected organs (such as the heart or lungs) may require specific medical treatment intended to improve their function during the active phase of the disease.
Treatment of mixed cryoglobulinemic disease is, similar to type I disease, directed toward treating any underlying disorder. This includes malignant (particularly Waldenström's macroglobulinemia in type II disease), infectious, or autoimmune diseases in type II and III disease. Recently, evidence of hepatitis C infection has been reported in the majority of mixed disease cases with rates being 70-90% in areas with high incidences of hepatitis C. The most effective therapy for hepatitis C-associated cryoglobulinemic disease consists of a combination of anti-viral drugs, pegylated INFα and ribavirin; depletion of B cells using rituximab in combination with antiviral therapy or used alone in patients refractory to antiviral therapy has also proven successful in treating the hepatitis C-associated disease. Data on the treatment of infectious causes other than hepatitis C for the mixed disease are limited. A current recommendation treats the underlying disease with appropriate antiviral, anti-bacterial, or anti-fungal agents, if available; in cases refractory to an appropriate drug, the addition of immunosuppressive drugs to the therapeutic regimen may improve results. Mixed cryoglobulinemic disease associated with autoimmune disorders is treated with immunosuppressive drugs: combination of a corticosteroid with either cyclophosphamide, azathioprine, or mycophenolate or combination of a corticosteroid with rituximab have been used successfully to treated mixed disease associated with autoimmune disorders.
Treatment is beta blockers, ASA, and NSAIDs (or corticosteroids if NSAIDs are ineffective).
Treatment is based on symptoms. Beta-blockers relieve rapid heart rate and excessive sweating during the hyperthyroid phase.
Analgesics may be needed for the abdominal and joint pains. It is uncertain as to whether HSP needs treatment beyond controlling the symptoms. Most patients do not receive therapy because of the high spontaneous recovery rate. Steroids are generally avoided. However, if they are given early in the disease episode, the duration of symptoms may be shortened, and abdominal pain can improve significantly. Moreover, the chance of severe kidney problems may be reduced. A systematic review of randomized clinical trials did not find any evidence that steroid treatment (prednisone) is effective at decreasing the likelihood of developing long-term kidney disease.
Evidence of worsening kidney damage would normally prompt a kidney biopsy. Treatment may be indicated on the basis of the appearance of the biopsy sample; various treatments may be used, ranging from oral steroids to a combination of intravenous methylprednisolone (steroid), cyclophosphamide and dipyridamole followed by prednisone. Other regimens include steroids/azathioprine, and steroids/cyclophosphamide (with or without heparin and warfarin). Intravenous immunoglobulin (IVIG) is occasionally used.
There is no evidence from randomized clinical trials that treating children who have HSP with antiplatelet agent prevents persistent kidney disease. There is also no evidence from randomized clinical trials that treating children or adults with cyclophosphamide prevents severe kidney disease. Heparin treatment is not justified.
Treatment involves medications to suppress the immune system, including prednisone and cyclophosphamide. In some cases, methotrexate or leflunomide may be helpful. Some patients have also noticed a remission phase when a four-dose infusion of rituximab is used before the leflunomide treatment is begun. Therapy results in remissions or cures in 90% of cases. Untreated, the disease is fatal in most cases. The most serious associated conditions generally involve the kidneys and gastrointestinal tract. A fatal course usually involves gastrointestinal bleeding, infection, myocardial infarction, and/or kidney failure.
In case of remission, about 60% experience relapse within five years. In cases caused by hepatitis B virus, however, recurrence rate is only around 6%.
Most patients with T-cell prolymphocytic leukemia require immediate treatment.
T-cell prolymphocytic leukemia is difficult to treat, and it does not respond to most available chemotherapeutic drugs. Many different treatments have been attempted, with limited success in certain patients: purine analogues (pentostatin, fludarabine, cladribine), chlorambucil, and various forms of combination chemotherapy regimens, including cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP), etoposide, bleomycin (VAPEC-B).
Alemtuzumab (Campath), an anti-CD52 monoclonal antibody that attacks white blood cells, has been used in treatment with greater success than previous options. In one study of previously treated people with T-PLL, people who had a complete response to alemtuzumab survived a median of 16 months after treatment.
Some patients who successfully respond to treatment also undergo stem cell transplantation to consolidate the response.
Alemtuzumab has been investigated for use in treatment of refractory T-cell large granular lymphocytic leukemia.
Before modern treatments, the 2-year mortality was over 90% and average survival five months. Death usually resulted from uremia or respiratory failure.
With corticosteroids and cyclophosphamide, 5-year survival is over 80%. Long-term complications are common (86%), mainly chronic kidney failure, hearing loss and deafness.
Today, drug toxicity is managed more carefully and long-term remissions are possible. Some patients are able to lead relatively normal lives and remain in remission for 20+ years after treatment.
Children with Kawasaki disease should be hospitalized and cared for by a physician who has experience with this disease. When in an academic medical center, care is often shared between pediatric cardiology, pediatric rheumatology, and pediatric infectious disease specialists (although no specific infectious agent has been identified as yet). Treatment should be started as soon as the diagnosis is made to prevent damage to the coronary arteries.
Intravenous immunoglobulin (IVIG) is the standard treatment for Kawasaki disease and is administered in high doses with marked improvement usually noted within 24 hours. If the fever does not respond, an additional dose may have to be considered. In rare cases, a third dose may be given to the child. IVIG by itself is most useful within the first seven days of onset of fever, in terms of preventing coronary artery aneurysm.
Salicylate therapy, particularly aspirin, remains an important part of the treatment (though questioned by some) but salicylates alone are not as effective as IVIG. Aspirin therapy is started at high doses until the fever subsides, and then is continued at a low dose when the patient returns home, usually for two months to prevent blood clots from forming. Except for Kawasaki disease and a few other indications, aspirin is otherwise normally not recommended for children due to its association with Reye's syndrome. Because children with Kawasaki disease will be taking aspirin for up to several months, vaccination against varicella and influenza is required, as these infections are most likely to cause Reye's syndrome.
High-dose aspirin is associated with anemia and does not confer benefit to disease outcomes.
Corticosteroids have also been used, especially when other treatments fail or symptoms recur, but in a randomized controlled trial, the addition of corticosteroid to immune globulin and aspirin did not improve outcome. Additionally, corticosteroid use in the setting of Kawasaki disease is associated with increased risk of coronary artery aneurysm, so its use is generally contraindicated in this setting. In cases of Kawasaki disease refractory to IVIG, cyclophosphamide and plasma exchange have been investigated as possible treatments, with variable outcomes.
Because most patients respond to steroids or immunosuppressant treatment, this condition is now also referred to as steroid-responsive encephalopathy.
Initial treatment is usually with oral prednisone (50–150 mg/day) or high-dose IV methylprednisolone (1 g/day) for 3–7 days. Thyroid hormone treatment is also included if required.
Failure of some patients to respond to this first line treatment has produced a variety of alternative treatments including azathioprine, cyclophosphamide, chloroquine, methotrexate, periodic intravenous immunoglobulin and plasma exchange. There have been no controlled trials so the optimal treatment is not known.
Seizures, if present, are controlled with typical antiepileptic agents.
Other than identifying and treating any underlying conditions in secondary livedo, idiopathic livedo reticularis may improve with warming the area.
The first line treatment for polymyositis is corticosteroids. Specialized exercise therapy may supplement treatment to enhance quality of life.
Patients presenting with no symptoms, and not affected by the syndrome may not require treatment. Corticosteroids have been reported to be of benefit in select patients. Bronchodilators may assist with breathing issues and resolution may occur with the use of Highly Active Anti-Retroviral Therapy. However, responses to different treatments are widely varied, and no single first line treatment represents the default treatment for lymphocytic interstitial pneumonia.
Budesonide, in colonic release preparations, has been shown in randomized controlled trials to be effective in treating this disorder. It helps control the diarrheal symptoms and treatment is usually given for several weeks. Sometimes it is used to prevent frequent relapses.
Over-the-counter antidiarrheal drugs may be effective for some people with lymphocytic colitis. Anti-inflammatory drugs, such as salicylates, mesalazine, and systemic corticosteroids may be prescribed for people who do not respond to other drug treatment. The long-term prognosis for this disease is good with a proportion of people suffering relapses which respond to treatment.
Necrotizing vasculitis also called Systemic necrotizing vasculitus (SNV) is a category of vasculitis, comprising vasculitides that present with necrosis.
Examples include giant cell arteritis, microscopic polyangiitis, and granulomatosis with polyangiitis.
ICD-10 uses the variant "necrotizing vasculopathy". ICD-9, while classifying these conditions together, doesn't use a dedicated phrase, instead calling them "polyarteritis nodosa and allied conditions".
When using the influential classification known as the "Chapel Hill Consensus Conference", the terms "systemic vasculitis" or "primary systemic vasculitides" are commonly used. Although the word "necrotizing" is omitted, the conditions described are largely the same.
Natural killer (NK) cell therapy is used in pediatrics for children with relapsed lymphoid leukemia. These patients normally have a resistance to chemotherapy, therefore, in order to continue on, must receive some kind of therapy. In some cases, NK cell therapy is a choice.
NK cells are known for their ability to eradicate tumor cells without any prior sensitization to them. One problem when using NK cells in order to fight off lymphoid leukemia is the fact that it is hard to amount enough of them to be effective. One can receive donations of NK cells from parents or relatives through bone marrow transplants. There are also the issues of cost, purity and safety. Unfortunately, there is always the possibility of Graft vs host disease while transplanting bone marrow.
NK cell therapy is a possible treatment for many different cancers such as Malignant glioma.
Treatment is first with many different high-dose steroids, namely glucocorticoids. Then, if symptoms do not improve additional immunosuppression such as cyclophosphamide are added to decrease the immune system's attack on the body's own tissues. Cerebral vasculitis is a very rare condition that is difficult to diagnose, and as a result there are significant variations in the way it is diagnosed and treated.