Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment (which is based on supportive care) is as follows:
Pyrimethamine-based maintenance therapy is often used to treat Toxoplasmic Encephalitis (TE), which is caused by Toxoplasma gondii and can be life-threatening for people with weak immune systems. The use of highly active antiretroviral therapy (HAART), in conjunction with the established pyrimethamine-based maintenance therapy, decreases the chance of relapse in patients with HIV and TE from approximately 18% to 11%. This is a significant difference as relapse may impact the severity and prognosis of disease and result in an increase in healthcare expenditure.
No specific therapy is available at present for La Crosse encephalitis, and management is limited to alleviating the symptoms and balancing fluids and electrolyte levels. Intravenous ribavirin is effective against La Crosse encephalitis virus in the laboratory, and several studies in patients with severe, brain biopsy confirmed, La Crosse encephalitis are ongoing.
In a trial with 15 children being infected with La Crosse viral encephalitis were treated at certain phases with ribavirin (RBV). RBV appeared to be safe at moderate doses. At escalated doses of RBV, adverse events occurred and then the trial was discontinued. Nonetheless, this was the largest study of antiviral treatment for La Crosse encephalitis.
Development of new therapies has been hindered by the lack of appropriate animal model systems for some important viruses and also because of the difficulty in conducting human clinical trials for diseases that are rare. Nonetheless, numerous innovative approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpes virus drugs include viral helicase-primase and terminase inhibitors. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses.
Treatments of proven efficacy are currently limited mostly to herpes viruses and human immunodeficiency virus. The herpes virus is of two types: herpes type 1 (HSV-1, or oral herpes) and herpes type 2 (HSV-2, or genital herpes). Although there is no particular cure; there are treatments that can relieve the symptoms. Drugs like Famvir, Zovirax, and Valtrex are among the drugs used, but these medications can only decrease pain and shorten the healing time. They can also decrease the total number of outbreaks in the surrounding. Warm baths also may relive the pain of genital herpes.
Human Immunodeficiency Virus Infection (HIV) is treated by using a combination of medications to fight against the HIV infection in the body. This is called antiretroviral therapy (ART). ART is not a cure, but it can control the virus so that a person can live a longer, healthier life and reduce the risk of transmitting HIV to others around him. ART involves taking a combination of HIV medicines (called an HIV regimen) every day, exactly as prescribed by the doctor. These HIV medicines prevent HIV Virus from multiplying (making copies of itself in the body), which reduces the amount of HIV in the body. Having less HIV in the body gives the immune system a chance to recover and fight off infections and cancers. Even though there is still some HIV in the body, the immune system is strong enough to fight off infections and cancers. By reducing the amount of HIV in the body, HIV medicines also reduce the risk of transmitting the virus to others. ART is recommended for all people with HIV, regardless of how long they’ve had the virus or how healthy they are. If left untreated, HIV will attack the immune system and eventually progress to AIDS.
Acyclovir is the treatment of choice for Mollaret's meningitis. Some patients see a drastic difference in how often they get sick and others don't. Often treatment means managing symptoms, such as pain management and strengthening the immune system.
The IHMF recommends that patients with benign recurrent lymphocytic meningitis receive intravenous acyclovir in the amount of 10 mg/kg every 8 hours, for 14–21 days. More recently, the second-generation antiherpetic drugs valacyclovir and famciclovir have been used to successfully treat patients with Mollaret's. Additionally, it has been reported that Indomethacin administered in the amount of 25 mg 3 times per day after meals, or 50 mg every 4 hours, has resulted in a faster recovery for patients, as well as more extended symptom-free intervals, between episodes.
The disease is incurable once manifested, so there is no specific drug therapy for TBE. Symptomatic brain damage requires hospitalization and supportive care based on syndrome severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances for symptomatic relief. Tracheal intubation and respiratory support may be necessary.
Prevention includes non-specific (tick-bite prevention, tick checks) and specific prophylaxis in the form of a vaccine. TBE immunoglobulin is no longer used. Tick-borne encephalitis vaccine is very effective and available in many disease endemic areas and in travel clinics.
Treatment is symptomatic and supportive. Children with hydrocephalus often need a ventriculoperitoneal shunt. Nucleoside analog ribavirin is used in some cases due to the inhibitory effect the agent has "in vitro" on arenaviruses. However, there is not sufficient evidence for efficacy in humans to support routine use. The only survivor of a transplant-associated LCMV infection was treated with ribavirin and simultaneous tapering of the immunosuppressive medications. Early and intravenous ribavirin treatment is required for maximal efficacy, and it can produce considerable side effects. Ribavirin has not been evaluated yet in controlled clinical trials.
Use of ribavirin during pregnancy is generally not recommended, as some studies indicate the possibility of teratogenic effects. If aseptic meningitis, encephalitis, or meningoencephalitis develops in consequence to LCMV, hospitalization and supportive treatment may be required. In some circumstances, anti-inflammatory drugs may also be considered. In general, mortality is less than one percent.
Treatment is generally supportive. Rest, hydration, antipyretics, and pain or anti-inflammatory medications may be given as needed.
Herpes simplex virus, varicella zoster virus and cytomegalovirus have a specific antiviral therapy. For herpes the treatment of choice is aciclovir.
Surgical management is indicated where there is extremely increased intracranial pressure, infection of an adjacent bony structure (e.g. mastoiditis), skull fracture, or abscess formation.
The majority of people that have viral meningitis get better within 7-10 days.
Recurring Mollaret meningitis attacks will occur through the patient lifespan so long as the HSV virus is not managed. Patients have reported symptoms for as long as 30 years from first episode. Diet and stress management are key to keeping the HSV virus at bay.
Vaccination is available against tick-borne and Japanese encephalitis and should be considered for at-risk individuals. Post-infectious encephalomyelitis complicating smallpox vaccination is avoidable, for all intents and purposes, as smallpox is nearly eradicated. Contraindication to Pertussis immunization should be observed in patients with encephalitis.
Antiviral therapy: as early as possible
10~15mg/kg every 8 hours for 14~21d
5~10mg/kg every 12hours for 14~21d
immune therapy: interferon
symptomatic therapy
High fever: physical regulation of body temperature
Seizure: antiepileptic drugs
high intracranial pressure-20%mannitol
Infections: antibiotic drugs
People reduce the chance of getting infected with LACV by preventing mosquito bites. There is no vaccine or preventive drug.
Prevention measures against LACV include reducing exposure to mosquito bites. Use repellent such as DEET and picaridin, while spending time outside, especially at during the daytime - from dawn until dusk. "Aedes triseriatus" mosquitoes that transmit (LACV) are most active during the day. Wear long sleeves, pants and socks while outdoors. Ensure all screens are in good condition to prevent mosquitoes from entering your home. "Aedes triseriatus" prefer treeholes to lay eggs in. Also, remove stagnant water such as old tires, birdbaths, flower pots, and barrels.
Most people recover from West Nile virus without treatment. No specific treatment is available for WNV infection. In mild cases over the counter pain relievers can help ease mild headaches and muscle aches in adults. In severe cases treatment consists of supportive care that often involves hospitalization, intravenous fluids, pain medication, respiratory support, and prevention of secondary infections.
Viral meningitis typically only requires supportive therapy; most viruses responsible for causing meningitis are not amenable to specific treatment. Viral meningitis tends to run a more benign course than bacterial meningitis. Herpes simplex virus and varicella zoster virus may respond to treatment with antiviral drugs such as aciclovir, but there are no clinical trials that have specifically addressed whether this treatment is effective. Mild cases of viral meningitis can be treated at home with conservative measures such as fluid, bedrest, and analgesics.
Most cases of HHV-6 infection get better on their own. If encephalitis occurs ganciclovir or foscarnet may be useful.
Antiviral drugs may reduce the severity and duration of shingles; however, they do not prevent postherpetic neuralgia. Of these drugs, aciclovir has been the standard treatment, but the new drugs valaciclovir and famciclovir demonstrate similar or superior efficacy and good safety and tolerability. The drugs are used both for prevention (for example in HIV/AIDS) and as therapy during the acute phase. Complications in immunocompromised individuals with shingles may be reduced with intravenous aciclovir. In people who are at a high risk for repeated attacks of shingles, five daily oral doses of aciclovir are usually effective.
Additional treatment with corticosteroids (usually dexamethasone) has shown some benefits, such as a reduction of hearing loss, and better short term neurological outcomes in adolescents and adults from high-income countries with low rates of HIV. Some research has found reduced rates of death while other research has not. They also appear to be beneficial in those with tuberculosis meningitis, at least in those who are HIV negative.
Professional guidelines therefore recommend the commencement of dexamethasone or a similar corticosteroid just before the first dose of antibiotics is given, and continued for four days. Given that most of the benefit of the treatment is confined to those with pneumococcal meningitis, some guidelines suggest that dexamethasone be discontinued if another cause for meningitis is identified. The likely mechanism is suppression of overactive inflammation.
Additional treatment with corticosteroids have a different role in children than in adults. Though the benefit of corticosteroids has been demonstrated in adults as well as in children from high-income countries, their use in children from low-income countries is not supported by the evidence; the reason for this discrepancy is not clear. Even in high-income countries, the benefit of corticosteroids is only seen when they are given prior to the first dose of antibiotics, and is greatest in cases of "H. influenzae" meningitis, the incidence of which has decreased dramatically since the introduction of the Hib vaccine. Thus, corticosteroids are recommended in the treatment of pediatric meningitis if the cause is "H. influenzae", and only if given prior to the first dose of antibiotics; other uses are controversial.
People with mild to moderate pain can be treated with over-the-counter pain medications. Topical lotions containing calamine can be used on the rash or blisters and may be soothing. Occasionally, severe pain may require an opioid medication, such as morphine. Once the lesions have crusted over, capsaicin cream (Zostrix) can be used. Topical lidocaine and nerve blocks may also reduce pain. Administering gabapentin along with antivirals may offer relief of postherpetic neuralgia.
Medications are usually not needed as hand, foot, and mouth disease is a viral disease that typically resolves on its own. Currently, there is no specific curative treatment for hand, foot and mouth disease. Disease management typically focuses on achieving symptomatic relief. Pain from the sores may be eased with the use of analgesic medications. Infection in older children, adolescents, and adults is typically mild and lasts approximately 1 week, but may occasionally run a longer course. Fever reducers and lukewarm baths can help decrease body temperature.
A minority of individuals with hand, foot and mouth disease may require hospital admission due to complications such as inflammation of the brain, inflammation of the meninges, or acute flaccid paralysis. Non-neurologic complications such as inflammation of the heart, fluid in the lungs, or bleeding into the lungs may also occur.
Oropouche Fever has no cure or specific therapy so treatment is done by relieving the pain of the symptoms through symptomatic treatment. Certain oral analgesic and anti-inflammatory agents can help treat headaches and body pains. In extreme cases of oropouche fever the drug, Ribavirin is recommended to help against the virus. This is called antiviral therapy. Treatments also consist of drinking lots of fluids to prevent dehydration.
Asprin is not a recommended choice of drug because it can reduce blood clotting and may aggravate the hemorrhagic effects and prolong recovery time.
The infection is usually self-limiting and complications are rare. This illness usually lasts for about a week but in extreme cases can be prolonged. Patients usually recover fully with no long term ill effects. There have been no recorded fatalities resulting from oropouche fever.
All persons suspected of Lassa fever infection should be admitted to isolation facilities and their body fluids and excreta properly disposed of.
Early and aggressive treatment using ribavirin was pioneered by Joe McCormick in 1979. After extensive testing, early administration was determined to be critical to success. Additionally, ribavirin is almost twice as effective when given intravenously as when taken by mouth. Ribavirin is a prodrug which appears to interfere with viral replication by inhibiting RNA-dependent nucleic acid synthesis, although the precise mechanism of action is disputed. The drug is relatively inexpensive, but the cost of the drug is still very high for many of those in West African states. Fluid replacement, blood transfusion, and fighting hypotension are usually required. Intravenous interferon therapy has also been used.
When Lassa fever infects pregnant women late in their third trimester, induction of delivery is necessary for the mother to have a good chance of survival. This is because the virus has an affinity for the placenta and other highly vascular tissues. The fetus has only a one in ten chance of survival no matter what course of action is taken; hence, the focus is always on saving the life of the mother. Following delivery, women should receive the same treatment as other Lassa fever patients.
Work on a vaccine is continuing, with multiple approaches showing positive results in animal trials.
Paracetamol (acetaminophen) and NSAIDs, such as ibuprofen, may be used to reduce fever and pain. Prednisone, a corticosteroid, while used to try to reduce throat pain or enlarged tonsils, remains controversial due to the lack of evidence that it is effective and the potential for side effects. Intravenous corticosteroids, usually hydrocortisone or dexamethasone, are not recommended for routine use but may be useful if there is a risk of airway obstruction, a very low platelet count, or hemolytic anemia.
There is little evidence to support the use of antivirals such as aciclovir and valacyclovir although they may reduce initial viral shedding. Although antivirals are not recommended for people with simple infectious mononucleosis, they may be useful (in conjunction with steroids) in the management of severe EBV manifestations, such as EBV meningitis, peripheral neuritis, hepatitis, or hematologic complications.
Although antibiotics exert no antiviral action they may be indicated to treat bacterial secondary infections of the throat, such as with streptococcus (strep throat). However, ampicillin and amoxicillin are not recommended during acute Epstein–Barr virus infection as a diffuse rash may develop.
Immunosuppressive therapy has been effective in halting the disease for laboratory animals.
Infectious mononucleosis is generally self-limiting, so only symptomatic or supportive treatments are used. The need for rest and return to usual activities after the acute phase of the infection may reasonably be based on the person's general energy levels. Nevertheless, in an effort to decrease the risk of splenic rupture experts advise avoidance of contact sports and other heavy physical activity, especially when involving increased abdominal pressure or the Valsalva maneuver (as in rowing or weight training), for at least the first 3–4 weeks of illness or until enlargement of the spleen has resolved, as determined by a treating physician.
There is no specific vaccine against or treatment for exanthema subitum, and most children with the disease are not seriously ill.