Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A number of treatments have been investigated in the past for IPF, including interferon gamma-1β, bosentan, ambrisentan, and anticoagulants, but these are no longer considered effective treatment options. Many of these earlier studies were based on the hypothesis that IPF is an inflammatory disorder.
"N"-Acetylcysteine (NAC) is a precursor to glutathione, an antioxidant. It has been hypothesized that treatment with high doses of NAC may repair an oxidant–antioxidant imbalance that occurs in the lung tissue of patients with IPF. In the first clinical trial of 180 patients (IFIGENIA), NAC was shown in previous study to reduce the decline in VC and DLCO over 12 months of follow-up when used in combination with prednisone and azathioprine (triple therapy).
More recently, a large randomized, controlled trial (PANTHER-IPF) was undertaken by the National Institutes of Health (NIH) in the USA to evaluate triple therapy and NAC monotherapy in IPF patients. This study found that the combination of prednisone, azathioprine, and NAC increased the risk of death and hospitalizations and the NIH announced in 2012 that the triple-therapy arm of the PANTHER-IPF study had been terminated early.
This study also evaluated NAC alone and the results for this arm of the study were published in May 2014 in the New England Journal of Medicine, concluding that "as compared with placebo, acetylcysteine offered no significant benefit with respect to the preservation of FVC in patients with idiopathic pulmonary fibrosis with mild-to-moderate impairment in lung function".
Specific pretreatments, drugs to prevent chemically induced lung injuries due to respiratory airway toxins, are not available. Analgesic medications, oxygen, humidification, and ventilator support currently constitute standard therapy. In fact, mechanical ventilation remains the therapeutic mainstay for acute inhalation injury. The cornerstone of treatment is to keep the PaO2 > 60 mmHg (8.0 kPa), without causing injury to the lungs with excessive O2 or volutrauma. Pressure control ventilation is more versatile than volume control, although breaths should be volume limited, to prevent stretch injury to the alveoli. Positive end-expiratory pressure (PEEP) is used in mechanically ventilated patients with ARDS to improve oxygenation. Hemorrhaging, signifying substantial damage to the lining of the airways and lungs, can occur with exposure to highly corrosive chemicals and may require additional medical interventions. Corticosteroids are sometimes administered, and bronchodilators to treat bronchospasms. Drugs that reduce the inflammatory response, promote healing of tissues, and prevent the onset of pulmonary edema or secondary inflammation may be used following severe injury to prevent chronic scarring and airway narrowing.
Although current treatments can be administered in a controlled hospital setting, many hospitals are ill-suited for a situation involving mass casualties among civilians. Inexpensive positive-pressure devices that can be used easily in a mass casualty situation, and drugs to prevent inflammation and pulmonary edema are needed. Several drugs that have been approved by the FDA for other indications hold promise for treating chemically induced pulmonary edema. These include β2-agonists, dopamine, insulin, allopurinol, and non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Ibuprofen is particularly appealing because it has an established safety record and can be easily administered as an initial intervention. Inhaled and systemic forms of β2-agonists used in the treatment of asthma and other commonly used medications, such as insulin, dopamine, and allopurinol have also been effective in reducing pulmonary edema in animal models but require further study. A recent study documented in the "AANA Journal" discussed the use of volatile anesthetic agents, such as sevoflurane, to be used as a bronchodilator that lowered peak airway pressures and improved oxygenation. Other promising drugs in earlier stages of development act at various steps in the complex molecular pathways underlying pulmonary edema. Some of these potential drugs target the inflammatory response or the specific site(s) of injury. Others modulate the activity of ion channels that control fluid transport across lung membranes or target surfactant, a substance that lines the air sacs in the lungs and prevents them from collapsing. Mechanistic information based on toxicology, biochemistry, and physiology may be instrumental in determining new targets for therapy. Mechanistic studies may also aid in the development of new diagnostic approaches. Some chemicals generate metabolic byproducts that could be used for diagnosis, but detection of these byproducts may not be possible until many hours after initial exposure. Additional research must be directed at developing sensitive and specific tests to identify individuals quickly after they have been exposed to varying levels of chemicals toxic to the respiratory tract.
Currently there are no clinically approved agents that can reduce pulmonary and airway cell dropout and avert the transition to pulmonary and /or airway fibrosis.
Pulmonary fibrosis creates scar tissue. The scarring is permanent once it has developed. Slowing the progression and prevention depends on the underlying cause:
- Treatment options for idiopathic pulmonary fibrosis are very limited. Though research trials are ongoing, there is no evidence that any medications can significantly help this condition. Lung transplantation is the only therapeutic option available in severe cases. Since some types of lung fibrosis can respond to corticosteroids (such as prednisone) and/or other medications that suppress the body's immune system, these types of drugs are sometimes prescribed in an attempt to slow the processes that lead to fibrosis.
- Two pharmacological agents intended to prevent scarring in mild idiopathic fibrosis are pirfenidone, which reduced reductions in the 1-year rate of decline in FVC. Pirfenidone also reduced the decline in distances on the 6-minute walk test, but had no effect on respiratory symptoms. The second agent is nintedanib, which acts as antifibrotic, mediated through the inhibition of a variety of tyrosine kinase receptors (including platelet-derived growth factor, fibroblast growth factor, and vascular endothelial growth factor). A randomized clinical trial showed it reduced lung-function decline and acute exacerbations.
- Anti-inflammatory agents have only limited success in reducing the fibrotic progress. Some of the other types of fibrosis, such as non-specific interstitial pneumonia, may respond to immunosuppressive therapy such as corticosteroids. However, only a minority of patients respond to corticosteroids alone, so additional immunosuppressants, such as cyclophosphamide, azathioprine, methotrexate, penicillamine, and cyclosporine may be used. Colchicine has also been used with limited success. There are ongoing trials with newer drugs such as IFN-γ and mycophenolate mofetil..
- Hypersensitivity pneumonitis, a less severe form of pulmonary fibrosis, is prevented from becoming aggravated by avoiding contact with the causative material.
- Oxygen supplementation improves the quality of life and exercise capacity. Lung transplantation may be considered for some patients.
Corticosteroids are the mainstay of treatment of IPH, though they are controversial and lack clear evidence in their favour. They are thought to decrease the frequency of haemorrhage, while other studies suggest that they do not have any effect on the course or prognosis of this disease. In either case, steroid therapy has significant side effects. Small trials have investigated the use of other medications, but none has emerged as a clear standard of care. This includes immune modulators such as hydroxychloroquine, azathioprine, and cyclophosphamide. 6-mercaptopurine as a long-term therapy may prevent pulmonary haemorrhage. A 2007 scientific letter. reports preliminary success in preventing pulmonary haemorrhage with the anti-oxidant N-acetylcysteine.
In those with underlying heart disease, effective control of congestive symptoms prevents pulmonary edema.
Dexamethasone is in widespread use for the prevention of high altitude pulmonary edema. Sildenafil is used as a preventive treatment for altitude-induced pulmonary edema and pulmonary hypertension, the mechanism of action is via phosphodiesterase inhibition which raises cGMP, resulting in pulmonary arterial vasodilation and inhibition of smooth muscle cell proliferation. While this effect has only recently been discovered, sildenafil is already becoming an accepted treatment for this condition, in particular in situations where the standard treatment of rapid descent has been delayed for some reason.
The initial management of pulmonary edema, irrespective of the type or cause, is supporting vital functions. Therefore, if the level of consciousness is decreased it may be required to proceed to tracheal intubation and mechanical ventilation to prevent airway compromise. Hypoxia (abnormally low oxygen levels) may require supplementary oxygen, but if this is insufficient then again mechanical ventilation may be required to prevent complications. Treatment of the underlying cause is the next priority; pulmonary edema secondary to infection, for instance, would require the administration of appropriate antibiotics.
Hypoxia caused by pulmonary fibrosis can lead to pulmonary hypertension, which, in turn, can lead to heart failure of the right ventricle. Hypoxia can be prevented with oxygen supplementation.
Pulmonary fibrosis may also result in an increased risk for pulmonary emboli, which can be prevented by anticoagulants.
ILD is not a single disease, but encompasses many different pathological processes. Hence treatment is different for each disease.
If a specific occupational exposure cause is found, the person should avoid that environment. If a drug cause is suspected, that drug should be discontinued.
Many cases due to unknown or connective tissue-based causes are treated with corticosteroids, such as prednisolone. Some people respond to immunosuppressant treatment. Patients with a low level of oxygen in the blood may be given supplemental oxygen.
Pulmonary rehabilitation appears to be useful. Lung transplantation is an option if the ILD progresses despite therapy in appropriately selected patients with no other contraindications.
On October 16, 2014, the Food and Drug Administration approved a new drug for the treatment of Idiopathic Pulmonary Fibrosis (IPF). This drug, Ofev (nintedanib), is marketed by Boehringer Ingelheim Pharmaceuticals, Inc. This drug has been shown to slow the decline of lung function although the drug has not been shown to reduce mortality or improve lung function. The estimated cost of the drug per year is approximately $94,000.
There is no cure available for asbestosis. Oxygen therapy at home is often necessary to relieve the shortness of breath and correct underlying low blood oxygen levels. Supportive treatment of symptoms includes respiratory physiotherapy to remove secretions from the lungs by postural drainage, chest percussion, and vibration. Nebulized medications may be prescribed in order to loosen secretions or treat underlying chronic obstructive pulmonary disease. Immunization against pneumococcal pneumonia and annual influenza vaccination is administered due to increased sensitivity to the diseases. Those with asbestosis are at increased risk for certain cancers. If the person smokes, quitting the habit reduces further damage. Periodic pulmonary function tests, chest x-rays, and clinical evaluations, including cancer screening/evaluations, are given to detect additional hazards.
Underlying disease must be controlled to prevent exacerbation and worsening of ABPA, and in most patients this consists of managing their asthma or CF. Any other co-morbidities, such as sinusitis or rhinitis, should also be addressed.
Hypersensitivity mechanisms, as described above, contribute to progression of the disease over time and, when left untreated, result in extensive fibrosis of lung tissue. In order to reduce this, corticosteroid therapy is the mainstay of treatment (for example with prednisone); however, studies involving corticosteroids in ABPA are limited by small cohorts and are often not double-blinded. Despite this, there is evidence that acute-onset ABPA is improved by corticosteroid treatment as it reduces episodes of consolidation. There are challenges involved in long-term therapy with corticosteroids—which can induce severe immune dysfunction when used chronically, as well as metabolic disorders—and approaches have been developed to manage ABPA alongside potential adverse effects from corticosteroids.
The most commonly described technique, known as sparing, involves using an antifungal agent to clear spores from airways adjacent to corticosteroid therapy. The antifungal aspect aims to reduce fungal causes of bronchial inflammation, whilst also minimising the dose of corticosteroid required to reduce the immune system’s input to disease progression. The strongest evidence (double-blinded, randomized, placebo-controlled trials) is for itraconazole twice daily for four months, which resulted in significant clinical improvement compared to placebo, and was mirrored in CF patients. Using itraconazole appears to outweigh the risk from long-term and high-dose prednisone. Newer triazole drugs—such as posaconazole or voriconazole—have not yet been studied in-depth through clinical trials in this context.
Whilst the benefits of using corticosteroids in the short term are notable, and improve quality of life scores, there are cases of ABPA converting to invasive aspergillosis whilst undergoing corticosteroid treatment. Furthermore, in concurrent use with itraconazole, there is potential for drug interaction and the induction of Cushing syndrome in rare instances. Metabolic disorders, such as diabetes mellitus and osteoporosis, can also be induced.
In order to mitigate these risks, corticosteroid doses are decreased biweekly assuming no further progression of disease after each reduction. When no exacerbations from the disease are seen within three months after discontinuing corticosteroids, the patient is considered to be in complete remission. The exception to this rule is patients who are diagnosed with advanced ABPA; in this case removing corticosteroids almost always results in exacerbation and these patients are continued on low-dose corticosteroids (preferably on an alternate-day schedule).
Serum IgE can be used to guide treatment, and levels are checked every 6–8 week after steroid treatment commences, followed by every 8 weeks for one year. This allows for determination of baseline IgE levels, though it’s important to note that most patients do not entirely reduce IgE levels to baseline. Chest X-ray or CT scans are performed after 1–2 months of treatment to ensure infiltrates are resolving.
Macrolide antibiotics, such as erythromycin, are an effective treatment for DPB when taken regularly over an extended period of time. Clarithromycin or roxithromycin are also commonly used. The successful results of macrolides in DPB and similar lung diseases stems from managing certain symptoms through immunomodulation (adjusting the immune response), which can be achieved by taking the antibiotics in low doses. Treatment consists of daily oral administration of erythromycin for two to three years, an extended period that has been shown to dramatically improve the effects of DPB. This is apparent when an individual undergoing treatment for DPB, among a number of disease-related remission criteria, has a normal neutrophil count detected in BAL fluid, and blood gas (an arterial blood test that measures the amount of oxygen and carbon dioxide in the blood) readings show that free oxygen in the blood is within the normal range. Allowing a temporary break from erythromycin therapy in these instances has been suggested, to reduce the formation of macrolide-resistant "P. aeruginosa". However, DPB symptoms usually return, and treatment would need to be resumed. Although highly effective, erythromycin may not prove successful in all individuals with the disease, particularly if macrolide-resistant "P. aeruginosa" is present or previously untreated DPB has progressed to the point where respiratory failure is occurring.
With erythromycin therapy in DPB, great reduction in bronchiolar inflammation and damage is achieved through suppression of not only neutrophil proliferation, but also lymphocyte activity and obstructive mucus and water secretions in airways. The antibiotic effects of macrolides are not involved in their beneficial effects toward reducing inflammation in DPB. This is evident because the treatment dosage is much too low to fight infection, and in DPB cases with the occurrence of macrolide-resistant "P. aeruginosa", erythromycin therapy still reduces inflammation.
A number of factors are involved in suppression of inflammation by erythromycin and other macrolides. They are especially effective at inhibiting the proliferation of neutrophils, by diminishing the ability of interleukin 8 and leukotriene B4 to attract them. Macrolides also reduce the efficiency of adhesion molecules that allow neutrophils to stick to bronchiolar tissue linings. Mucus production in the airways is a major culprit in the morbidity and mortality of DPB and other respiratory diseases. The significant reduction of inflammation in DPB attributed to erythromycin therapy also helps to inhibit the production of excess mucus.
Treatment is primarily supportive. Management in an intensive care unit is required and the need for mechanical ventilation is common. Therapy with corticosteroids is generally attempted, though their usefulness has not been established. The only treatment that has met with success to date is a lung transplant.
Death may occur rapidly with acute, massive pulmonary bleeding or over longer periods as the result of continued pulmonary failure and right heart failure. Historically, patients had an average survival of 2.5 years after diagnosis, but today 86% may survive beyond five years.
This disease is irreversible and severe cases often require a lung transplant. Transplant recipients are at risk for re-developing the disease, as bronchiolitis obliterans is a common complication of chronic rejection. Evaluation of interventions to prevent bronchiolitis obliterans relies on early detection of abnormal spirometry results or unusual decreases in repeated measurements.
A multi-center study has shown the combination of inhaled fluticasone propionate, oral montelukast, and oral azithromycin may be able to stabilize the disease and slow disease progression. This has only been studied in patients who previously underwent hematopoietic stem cell transplantation.
With treatment the five-year survival rate is >80% and fewer than 30% of affected individuals require long-term dialysis. A study performed in Australia and New Zealand demonstrated that in patients requiring renal replacement therapy (including dialysis) the median survival time is 5.93 years. Without treatment, virtually every affected person will end up dying from either advanced kidney failure or lung hemorrhages.
Given the constant threat of bioterrorist related events, there is an urgent need to develop pulmonary protective and reparative agents that can be used by first responders in a mass casualty setting. Use in such a setting would require administration via a convenient route for e.g. intramuscular via epipens. Other feasible routes of administration could be inhalation and perhaps to a lesser extent oral – swallowing can be difficult in many forms of injury especially if accompanied by secretions or if victim is nauseous. A number of in vitro and in vivo models lend themselves to preclinical evaluation of novel pulmonary therapies.
Acute respiratory distress syndrome is usually treated with mechanical ventilation in the intensive care unit (ICU). Mechanical ventilation is usually delivered through a rigid tube which enters the oral cavity and is secured in the airway (endotracheal intubation), or by tracheostomy when prolonged ventilation (≥2 weeks) is necessary. The role of non-invasive ventilation is limited to the very early period of the disease or to prevent worsening respiratory distress in individuals with atypical pneumonias, lung bruising, or major surgery patients, who are at risk of developing ARDS. Treatment of the underlying cause is crucial. Appropriate antibiotic therapy must be administered as soon as microbiological culture results are available, or clinical infection is suspected (whichever is earlier). Empirical therapy may be appropriate if local microbiological surveillance is efficient. The origin of infection, when surgically treatable, must be removed. When sepsis is diagnosed, appropriate local protocols should be enacted.
The administration of fluid therapy in individuals with pulmonary contusion is controversial. Excessive fluid in the circulatory system (hypervolemia) can worsen hypoxia because it can cause fluid leakage from injured capillaries (pulmonary edema), which are more permeable than normal. However, low blood volume (hypovolemia) resulting from insufficient fluid has an even worse impact, potentially causing hypovolemic shock; for people who have lost large amounts of blood, fluid resuscitation is necessary. A lot of the evidence supporting the idea that fluids should be withheld from people with pulmonary contusion came from animal studies, not clinical trials with humans; human studies have had conflicting findings on whether fluid resuscitation worsens the condition. Current recommendations suggest giving enough fluid to ensure sufficient blood flow but not giving any more fluid than necessary. For people who do require large amounts of intravenous fluid, a catheter may be placed in the pulmonary artery to measure the pressure within it. Measuring pulmonary artery pressure allows the clinician to give enough fluids to prevent shock without exacerbating edema. Diuretics, drugs that increase urine output to reduce excessive fluid in the system, can be used when fluid overload does occur, as long as there is not a significant risk of shock. Furosemide, a diuretic used in the treatment of pulmonary contusion, also relaxes the smooth muscle in the veins of the lungs, thereby decreasing pulmonary venous resistance and reducing the pressure in the pulmonary capillaries.
The treatment for cor pulmonale can include the following: antibiotics, expectorants, oxygen therapy, diuretics, digitalis, vasodilators, and anticoagulants. Some studies have indicated that Shenmai injection with conventional treatment is safe and effective for cor pulmonale (chronic).
Treatment requires diuretics (to decrease strain on the heart). Oxygen is often required to resolve the shortness of breath. Additionally, oxygen to the lungs also helps relax the blood vessels and eases right heart failure. When wheezing is present, the majority of individuals require a bronchodilator. A variety of drugs have been developed to relax the blood vessels in the lung, calcium channel blockers are used but only work in few cases and according to NICE are not recommended for use at all.
Anticoagulants are used when venous thromboembolism is present. Venesection is used in severe secondary polycythaemia (because of hypoxia), which improves symptoms though survival rate has not been proven to increase.Finally, transplantation of single/double lung in extreme cases of cor pulmonale is also an option.
Supportive care is the mainstay of therapy in TRALI. Oxygen supplementation is employed in all reported cases of TRALI and aggressive respiratory support is needed in 72 percent of patients. Intravenous administration of fluids, as well as vasopressors, are essential for blood pressure support. Use of diuretics, which are indicated in the management of transfusion associated circulatory overload (TACO), should be avoided in TRALI. Corticosteroids can be beneficial.
The major mainstay of treatment for GPS is plasmapheresis, a procedure in which the affected person's blood is sent through a centrifuge and the various components separated based on weight. The plasma, clear liquid part of the blood, contains the anti-GBM antibodies that attack the affected person's lungs and kidneys and is filtered out. The other parts of the blood, that is, the red blood cells, white blood cells, and platelets, are recycled and given intravenously as a replacement fluid. Most individuals affected by the disease also need to be treated with immunosuppressant drugs, especially cyclophosphamide, prednisone, and rituximab, to prevent the formation of new anti-GBM antibodies so as to prevent further damage to the kidneys and lungs. Other, less toxic immunosuppressants such as azathioprine may be used to maintain remission.
Inhaled nitric oxide (NO) selectively widens the lung's arteries which allows for more blood flow to open alveoli for gas exchange. Despite evidence of increased oxygenation status, there is no evidence that inhaled nitric oxide decreases morbidity and mortality in people with ARDS. Furthermore, nitric oxide may cause kidney damage and is not recommended as therapy for ARDS regardless of severity.
The primary medications for lung barotrauma are oxygen, oxygen-helium or nitrox, isotonic fluids, anti-inflammatory medications, decongestants, and analgesics.
Positive pressure ventilation, in which air is forced into the lungs, is needed when oxygenation is significantly impaired. Noninvasive positive pressure ventilation including continuous positive airway pressure (CPAP) and bi-level positive airway pressure (BiPAP), may be used to improve oxygenation and treat atelectasis: air is blown into the airways at a prescribed pressure via a face mask. Noninvasive ventilation has advantages over invasive methods because it does not carry the risk of infection that intubation does, and it allows normal coughing, swallowing, and speech. However, the technique may cause complications; it may force air into the stomach or cause aspiration of stomach contents, especially when level of consciousness is decreased.
People with signs of inadequate respiration or oxygenation may need to be intubated and mechanically ventilated. Mechanical ventilation aims to reduce pulmonary edema and increase oxygenation. Ventilation can reopen collapsed alveoli, but it is harmful for them to be repeatedly opened, and positive pressure ventilation can also damage the lung by overinflating it. Intubation is normally reserved for when respiratory problems occur, but most significant contusions do require intubation, and it may be done early in anticipation of this need. People with pulmonary contusion who are especially likely to need ventilation include those with prior severe lung disease or kidney problems; the elderly; those with a lowered level of consciousness; those with low blood oxygen or high carbon dioxide levels; and those who will undergo operations with anesthesia. Larger contusions have been correlated with a need for ventilation for longer periods of time.
Pulmonary contusion or its complications such as acute respiratory distress syndrome may cause lungs to lose compliance (stiffen), so higher pressures may be needed to give normal amounts of air and oxygenate the blood adequately. Positive end-expiratory pressure (PEEP), which delivers air at a given pressure at the end of the expiratory cycle, can reduce edema and keep alveoli from collapsing. PEEP is considered necessary with mechanical ventilation; however, if the pressure is too great it can expand the size of the contusion and injure the lung. When the compliance of the injured lung differs significantly from that of the uninjured one, the lungs can be ventilated independently with two ventilators in order to deliver air at different pressures; this helps avoid injury from overinflation while providing adequate ventilation.