Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Standard treatment is after delivery. There is tentative evidence about treatment for severe disease before delivery while the baby is inside the womb. As of 2014 the evidence; however, remains insufficient to determine benefits and harms.
Treatment of spina bifida during pregnancy is not without risk. To the mother, this includes scarring of the uterus. To the baby, there is the risk of preterm birth.
Broadly, there are two forms of prenatal treatment. The first is open fetal surgery, where the uterus is opened and the spina bifida repair performed. The second is via fetoscopy. These techniques may be an option to standard therapy.
Most individuals with myelomeningocele will need periodic evaluations by a variety of specialists:
- Physiatrists coordinate the rehabilitation efforts of different therapists and prescribe specific therapies, adaptive equipment, or medications to encourage as high of a functional performance within the community as possible.
- Orthopedists monitor growth and development of bones, muscles, and joints.
- Neurosurgeons perform surgeries at birth and manage complications associated with tethered cord and hydrocephalus.
- Neurologists treat and evaluate nervous system issues, such as seizure disorders.
- Urologists to address kidney, bladder, and bowel dysfunction – many will need to manage their urinary systems with a program of catheterization. Bowel management programs aimed at improving elimination are also designed.
- Ophthalmologists evaluate and treat complications of the eyes.
- Orthotists design and customize various types of assistive technology, including braces, crutches, walkers, and wheelchairs to aid in mobility. As a general rule, the higher the level of the spina bifida defect, the more severe the paralysis, but paralysis does not always occur. Thus, those with low levels may need only short leg braces, whereas those with higher levels do best with a wheelchair, and some may be able to walk unaided.
- Physical therapists, occupational therapists, psychologists, and speech/language pathologists aid in rehabilitative therapies and increase independent living skills.
Treatments of NTDs depends on the severity of the complication. No treatment is available for anencephaly and infants usually do not survive more than a few hours. Aggressive surgical management has improved survival and the functions of infants with spina bifida, meningoceles and mild myelomeningoceles. The success of surgery often depends on the amount of brain tissue involved in the encephalocele. The goal of treatment for NTDs is to allow the individual to achieve the highest level of function and independence. Fetal surgery in utero before 26 weeks gestation has been performed with some hope that there is benefit to the final outcome including a reduction in Arnold–Chiari malformation and thereby decreases the need for a ventriculoperitoneal shunt but the procedure is very high risk for both mother and baby and is considered extremely invasive with questions that the positive outcomes may be due to ascertainment bias and not true benefit. Further, this surgery is not a cure for all problems associated with a neural tube defect. Other areas of research include tissue engineering and stem cell therapy but this research has not been used in humans.
In 1996, the United States Food and Drug Administration published regulations requiring the addition of folic acid to enriched breads, cereals, flour and other grain products. It is important to note that during the first four weeks of pregnancy (when most women do not even realize that they are pregnant), adequate folate intake is essential for proper operation of the neurulation process. Therefore, women who could become pregnant are advised to eat foods fortified with folic acid or take supplements in addition to eating folate-rich foods to reduce the risks of serious birth defects.
In Canada, mandatory fortification of selected foods with folic acid has been shown to reduce the incidence of neural tube defects by 46%.
Women who may become pregnant are advised to get 400 micrograms of folic acid daily. Women who have previously given birth to a child with a neural tube defect may benefit from a supplement containing 4.0 mg/5.0 mg in the UK mg daily, following advice provided by their doctor.
Currently, the only effective treatment for encephaloceles is reparative surgery, generally performed during infancy. The extent to which it can be corrected depends on the location and size of the encephaloceles; however, large protrusions can be removed without causing major disability. Surgery repositions the bulging area back into the skull, removes the protrusions, and corrects the deformities, typically relieving pressure that can delay normal brain development. Occasionally, shunts are placed to drain excess cerebrospinal fluid from the brain.
The goals of treatment include:
- closure of open skin defects to prevent infection and desiccation of brain tissue
- removal of nonfunctional extracranial cerebral tissue with water-tight closure of the dura
- total craniofacial reconstruction with particular emphasis on avoiding the long-nose deformity (nasal elongation that results from depression of the cribiform plate and nasal placode). Without proper management, the long-nose deformity can be more obvious after repair.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
While there is no current cure, the treatments for Chiari malformation are surgery and management of symptoms, based on the occurrence of clinical symptoms rather than the radiological findings. The presence of a syrinx is known to give specific signs and symptoms that vary from dysesthetic sensations to algothermal dissociation to spasticity and paresis. These are important indications that decompressive surgery is needed for patients with Chiari Malformation Type II. Type II patients have severe brain stem damage and rapidly diminishing neurological response.
Decompressive surgery involves removing the lamina of the first and sometimes the second or third cervical vertebrae and part of the occipital bone of the skull to relieve pressure. The flow of spinal fluid may be augmented by a shunt. Since this surgery usually involves the opening of the dura mater and the expansion of the space beneath, a dural graft is usually applied to cover the expanded posterior fossa.
A small number of neurological surgeons believe that detethering the spinal cord as an alternate approach relieves the compression of the brain against the skull opening (foramen magnum), obviating the need for decompression surgery and associated trauma. However, this approach is significantly less documented in the medical literature, with reports on only a handful of patients. It should be noted that the alternative spinal surgery is also not without risk.
Complications of decompression surgery can arise. They include bleeding, damage to structures in the brain and spinal canal, meningitis, CSF fistulas, occipito-cervical instability and pseudomeningeocele. Rare post-operative complications include hydrocephalus and brain stem compression by retroflexion of odontoid. Also, an extended CVD created by a wide opening and big duroplasty can cause a cerebellar "slump". This complication needs to be corrected by cranioplasty.
In certain cases, irreducible compression of the brainstem occurs from in front (anteriorly or ventral) resulting in a smaller posterior fossa and associated Chiari malformation. In these cases, an anterior decompression is required. The most commonly used approach is to operate through the mouth (transoral) to remove the bone compressing the brainstem, typically the odontoid. This results in decompressing the brainstem and therefore gives more room for the cerebellum, thus decompressing the Chiari malformation. Arnold Menzes, MD, is the neurosurgeon who pioneered this approach in the 1970s at the University of Iowa. Between 1984 and 2008 (the MR imaging era), 298 patients with irreducible ventral compression of the brainstem and Chiari type 1 malformation underwent a transoral approach for ventral cervicomedullary decompression at the University of Iowa. The results have been excellent resulting in improved brainstem function and resolution of the Chiari malformation in the majority of patients.
Surgery is not always recommended for syringomyelia patients. For many patients, the main treatment is analgesia. Physicians specializing in pain management can develop a medication and treatment plan to ameliorate pain. Medications to combat any neuropathic pain symptoms such as shooting and stabbing pains (e.g. gabapentin or pregabalin) would be first-line choices. Opiates are usually prescribed for pain for management of this condition. Facet injections are not indicated for treatment of syringomyelia.
Drugs have no curative value as a treatment for syringomyelia. Radiation is used rarely and is of little benefit except in the presence of a tumor. In these cases, it can halt the extension of a cavity and may help to alleviate pain.
In the absence of symptoms, syringomyelia is usually not treated. In addition, a physician may recommend not treating the condition in patients of advanced age or in cases where there is no progression of symptoms. Whether treated or not, many patients will be told to avoid activities that involve straining.
Since the natural history of syringomyelia is poorly understood, a conservative approach may be recommended. When surgery is not yet advised, patients should be carefully monitored. Periodic MRI's and physical evaluations should be scheduled at the recommendation of a qualified physician.
The first step after diagnosis is finding a neurosurgeon who is experienced in the treatment of syringomyelia. Surgery is the treatment for syringomyelia. Evaluation of the condition is necessary because syringomyelia can remain stationary for long periods of time, and in some cases progress rapidly.
Surgery of the spinal cord has certain characteristic risks associated with it, and the benefits of a surgical procedure on the spine have to be weighed against the possible complications associated with any procedure. Surgical treatment is aimed at correcting the condition that allowed the syrinx to form. It is vital to bear in mind that the drainage of a syrinx does not necessarily mean the elimination of the syrinx-related symptoms but rather is aimed at stopping progression. In cases involving an Arnold-Chiari malformation, the main goal of surgery is to provide more space for the cerebellum at the base of the skull and upper cervical spine without entering the brain or spinal cord. This often results in flattening or disappearance of the primary syrinx or cavity, over time, as the normal flow of cerebrospinal fluid is restored. If a tumor is causing syringomyelia, removal of the tumor is the treatment of choice, if this is considered to be safe.
Surgery results in stabilization or modest improvement in symptoms for most patients. Delay in treatment may result in irreversible spinal cord injury. Recurrence of syringomyelia after surgery may make additional operations necessary; these may not be completely successful over the long term.
In some patients it may also be necessary to drain the syrinx, which can be accomplished using a catheter, drainage tubes, and valves. This system is also known as a shunt. Shunts are used in both the communicating and noncommunicating forms of the disorder. First, the surgeon must locate the syrinx. Then, the shunt is placed into it with the other end draining cerebrospinal fluid (CSF) into a cavity, usually the abdomen. This type of shunt is called a ventriculoperitoneal shunt and is particularly useful in cases involving hydrocephalus. By draining syrinx fluid, a shunt can arrest the progression of symptoms and relieve pain, headache, and tightness. Syringomyelia shunts are not always successful and can become blocked as with other central nervous system shunts.
The decision to use a shunt requires extensive discussion between doctor and patient, as this procedure carries with it greater risk of injury to the spinal cord, infection, blockage, or hemorrhage and may not necessarily work for all patients. Draining the syrinx more quickly does not produce better outcomes, but a shunt may be required if the fluid in the syrinx is otherwise unable to drain.
In the case of trauma-related syringomyelia, the surgeon operates at the level of the initial injury. The syrinx collapses at surgery, but a tube or shunt is usually necessary to prevent re-expansion.
It is recommended that women who may become pregnant take 400 micrograms of folic acid daily.
Treatment for Klippel–Feil syndrome is symptomatic and may include surgery to relieve cervical or craniocervical instability and constriction of the spinal cord, and to correct scoliosis.
Failing non-surgical therapies, spinal surgery may provide relief. Adjacent segment disease and scoliosis are two examples of common symptoms associated with Klippel–Feil syndrome, and they may be treated surgically. The three categories treated for types of spinal cord deficiencies are massive fusion of the cervical spine (Type I), the fusion of 1 or 2 vertebrae (Type II), and the presence of thoracic and lumbar spine anomalies in association with type I or type II Klippel–Feil syndrome (Type III).
Adjacent segment disease can be addressed by performing cervical disc arthroplasty using a device such as the Bryan cervical disc prosthesis.
The option of the surgery is to maintain range of motion and attenuate the rate of adjacent segment disease advancement without fusion.
Another type of arthroplasty that is becoming an alternate choice to spinal fusion is Total Disc Replacement. Total disc replacement objective is to reduce pain or eradicate it.
Spinal fusion is commonly used to correct spinal deformities such as scoliosis. Arthrodesis is the last resort in pain relieving procedures, usually when arthroplasties fail.
Pregnant mothers are advised to take folic acid supplements to reduce risk of iniencephaly by up to 70%. Pregnant mothers are also advised not to take antiepileptic drugs, diuretics, antihistamines, and sulfa drugs, all of which have been associated with increased risk for neural tube defects.
Treatment for individuals with Dandy–Walker Syndrome generally consists of treating the associated problems, if needed.
A special tube (shunt) to reduce intracranial pressure may be placed inside the skull to control swelling. Endoscopic third ventriculostomy is also an option.
Treatment may also consist of various therapies such as occupational therapy, physiotherapy, speech therapy or specialized education. Services of a teacher of students with blindness/visual impairment may be helpful if the eyes are affected.
The traditional medical management of scoliosis is complex and is determined by the severity of the curvature and skeletal maturity, which together help predict the likelihood of progression.
The conventional options for children and adolescents are:
1. Observation
2. Bracing
3. Surgery
For adults, treatment usually focuses on relieving any pain:
1. Painkilling medication
2. Bracing
3. Surgery
Treatment for idiopathic scoliosis also depends upon the severity of the curvature, the spine’s potential for further growth, and the risk that the curvature will progress. Mild scoliosis (less than 30 degrees deviation) may simply be monitored and treated with exercise. Moderately severe scoliosis (30–45 degrees) in a child who is still growing may require bracing. Severe curvatures that rapidly progresses may be treated surgically with spinal rod placement. Bracing may prevent a progressive curvature, but evidence for this is not very strong. In all cases, early intervention offers the best results.
A growing body of scientific research testifies to the efficacy of specialized treatment programs of physical therapy, which may include bracing.
A study measured outcome from surgery of 49 cases of scoliosis and kyphoscoliosis. Of this sample, 36 patients were monitored for a period of 8 years.
- 23% - excellent condition
- 29% - good condition
- 34% - satisfactory
- 14% - bad
Bad refers to cases where the surgery failed to address the disease and the patient either had to undergo a revision surgery or continues to suffer from a poor quality of life as before surgery.
It should be noted that typically post-surgery complications range up to 5% involving all major and minor complications when measured within one year of surgery. However, there may be a progressive decline in patient’s condition after a few years.
In another study that evaluated surgical treatment of kyphoscoliosis and scoliosis due to congenital reasons, 91% of surgeries were found to be successful and met their intended objectives for the two-year follow-up period after surgery. The sample consisted of 23 patients of whom 17 were male and 6 were female, with an average age of 27 years, ranging from 13 to 61 years. The most popular type of surgeries for spinal correction includes pedicle subtraction osteotomy (PSO) and posterior vertebral column resection (pVCR).
Another study which focused on elderly patients found that the rate of complications was much higher for a sample population of 72 cases with mean age of 60.7 years. The rate of complications was as high as 22% in the entire sample. The study points that in the case of elderly patients, surgery should only be considered when there is no other option left; the disease is in progression stage, and the quality of life has degraded to an extent where conservative treatments can no longer help with pain.
While there are many surgical approaches for spinal deformity correction including anterior only, posterior only, anterior-posterior, the techniques that are most popular nowadays include the posterior only VCR or pVCR. One of the studies which analyze pVCR technique also noted the benefit of using a technique called NMEP monitoring in assisting the surgeon avoid any neurological complications while performing a spine surgery.
In conclusion, the decision to undergo a corrective spine surgery is a complex one but sometimes becomes necessary when the quality of life has degraded to such an extent that potential benefits outweigh the risks. No surgery is devoid of risks but by carefully assessing factors such as the skills and experience of the surgical team, previous record or history of outcomes, and the techniques that are used for spine surgery, a patient along with his or her doctor can certainly help in achieving a successful outcome.
As studies are repeatedly pointing out, the success rates for spinal surgeries have improved so much so that the risks rates can now be comparable to other types of surgeries. These success rates also tend to be higher at a younger age when compared to the elderly age.
The procedure of spine shortening via vertebral osteotomy (SSVO) for TCS is a surgical technique that avoids the complication with revision tethering. In this research a lateral retropleural approach was used for SSVO in recurrent TCS in a 21-year-old female. The patient presented with progressive lower extremity weakness, bowel and bladder incontinence, and back pain in the setting of childhood repair of mylomeningocele and two previous detethering procedures. The research on performing SSVO in this patient allowed the scientists to conclude that SSVO via lateral retropleural approach is a good treatment for the recurrence of TCS. This procedure is minimally invasive compared to the posterior approach which gives the advantages of having direct access to the vertebral body and disc while avoiding the need to have an operation near the spinal cord but further research is still needed.
Examples of possible complications include shunt malfunction, shunt failure, and shunt infection, along with infection of the shunt tract following surgery (the most common reason for shunt failure is infection of the shunt tract). Although a shunt generally works well, it may stop working if it disconnects, becomes blocked (clogged), infected, or it is outgrown. If this happens the cerebrospinal fluid will begin to accumulate again and a number of physical symptoms will develop (headaches, nausea, vomiting, photophobia/light sensitivity), some extremely serious, like seizures. The shunt failure rate is also relatively high (of the 40,000 surgeries performed annually to treat hydrocephalus, only 30% are a patient's first surgery) and it is not uncommon for patients to have multiple shunt revisions within their lifetime.
Another complication can occur when CSF drains more rapidly than it is produced by the choroid plexus, causing symptoms - listlessness, severe headaches, irritability, light sensitivity, auditory hyperesthesia (sound sensitivity), nausea, vomiting, dizziness, vertigo, migraines, seizures, a change in personality, weakness in the arms or legs, strabismus, and double vision - to appear when the patient is vertical. If the patient lies down, the symptoms usually vanish quickly. A CT scan may or may not show any change in ventricle size, particularly if the patient has a history of slit-like ventricles. Difficulty in diagnosing overdrainage can make treatment of this complication particularly frustrating for patients and their families. Resistance to traditional analgesic pharmacological therapy may also be a sign of shunt overdrainage "or" failure.
The diagnosis of cerebrospinal fluid buildup is complex and requires specialist expertise. Diagnosis of the particular complication usually depends on when the symptoms appear - that is, whether symptoms occur when the patient is upright or in a prone position, with the head at roughly the same level as the feet.
Surgery is usually recommended by orthopedists for curves with a high likelihood of progression (i.e., greater than 45 to 50° of magnitude), curves that would be cosmetically unacceptable as an adult, curves in patients with spina bifida and cerebral palsy that interfere with sitting and care, and curves that affect physiological functions such as breathing.
Surgery is indicated by the Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) at 45 degrees to 50 degrees and by the Scoliosis Research Society (SRS) at a Cobb angle of 45 degrees. SOSORT uses the 45-degree to 50-degree threshold as a result of the well-documented, plus or minus five degrees measurement error that can occur while measuring Cobb angles.
Surgeons that are specialized in spine surgery are the ones who perform surgery for scoliosis. To completely straighten a scoliotic spine is usually impossible, however for the most part, significant corrections are achieved.
The two main types of surgery are:
- Anterior fusion: This surgical approach is through an incision at the side of the chest wall.
- Posterior fusion: This surgical approach is through an incision on the back and involves the use of metal instrumentation to correct the curve.
One or both of these surgical procedures may be needed. The surgery may be done in one or two stages and, on average, takes four to eight hours.
Because neurological deficits are generally irreversible, early surgery is recommended when symptoms begin to worsen. In children, early surgery is recommended to prevent further neurological deterioration, including but not limited to chronic urinary incontinence.
In adults, surgery to detether (free) the spinal cord can reduce the size and further development of cysts in the cord and may restore some function or alleviate other symptoms. Although detethering is the common surgical approach to TCS, another surgical option for adults is a spine-shortening vertebral osteotomy. A vertebral osteotomy aims to indirectly relieve the excess tension on the spinal cord by removing a portion of the spine, shortening it. This procedure offers a unique benefit in that the spinal cord remains fixated to the spine, preventing retethering and spinal cord injury as possible surgical complications. However, its complexity and limited “track record” presently keeps vertebral osteotomies reserved as an option for patients who have failed in preventing retethering after detethering procedure(s).
Other treatment is symptomatic and supportive. Medications such as NSAIDs, opiates, synthetic opiates, COX-2 inhibitors, and off-label applications of tricyclic antidepressants combined with anti-seizure compounds have yet to prove they are of value in treatment of this affliction's pain manifestations. There is anecdotal evidence that TENS units may benefit some patients.
Treatment may be needed in adults who, while previously asymptomatic, begin to experience pain, lower back degeneration, scoliosis, neck and upper back problems and bladder control issues. Surgery on adults with minimal symptoms is somewhat controversial. For example, a website from the Columbia University Department of Neurosurgery says, "For the child that has reached adult height with minimal if any symptoms, some neurosurgeons would advocate careful observation only." However, surgery for those who have worsening symptoms is less controversial. If the only abnormality is a thickened, shortened filum, then a limited lumbosacral laminectomy with division of the filum may be sufficient to relieve the symptoms.
This syndrome was first noticed in the late 19th century. While information has been available for years, little widespread blind research has been done. More research has been called for, and doctors have conducted many studies with good results. There is a low morbidity rate, and no complications have been documented other than those typical of any type of back surgery. The association of this condition with others has been noticed, and needs further research to understand such relationships. TCS is causally linked to Chiari malformation and any affirmative diagnosis of TCS must be followed by screening for Chiari's several degrees. TCS may also be related to Ehlers-Danlos syndrome, or Klippel-Feil syndrome, which should also be screened for upon a positive TCS diagnosis. Spinal compression and the resulting relief is a known issue with this disorder. Like with the early-onset form, this disease form is linked to the Arnold-Chiari malformation, in which the brain is pulled or lowers into the top of the spine.
Since newborns with iniencephaly so rarely survive past childbirth, a standard treatment does not exist.
Hydrocephalus can be successfully treated by placing a drainage tube (shunt) between the brain ventricles and abdominal cavity. There is some risk of infection being introduced into the brain through these shunts, however, and the shunts must be replaced as the person grows. A subarachnoid hemorrhage may block the return of CSF to the circulation.
This should be distinguished from external hydrocephalus. This is a condition generally seen in infants and involving enlarged fluid spaces or subarachnoid spaces around the outside of the brain. This is generally a benign condition that resolves spontaneously by 2 years of age. (Greenberg, Handbook of Neurosurgery, 5th Edition, pg 174). Imaging studies and a good medical history can help to differentiate external hydrocephalus from subdural hemorrhages or symptomatic chronic extra-axial fluid collections which are accompanied by vomiting, headaches and seizures.
Hydrocephalus treatment is surgical, creating a way for the excess fluid to drain away. In the short term, an external ventricular drain (EVD), also known as an extraventricular drain or ventriculostomy, provides relief. In the long term, some patients will need any of various types of cerebral shunt. It involves the placement of a ventricular catheter (a tube made of silastic) into the cerebral ventricles to bypass the flow obstruction/malfunctioning arachnoidal granulations and drain the excess fluid into other body cavities, from where it can be resorbed. Most shunts drain the fluid into the peritoneal cavity (ventriculo-peritoneal shunt), but alternative sites include the right atrium (ventriculo-atrial shunt), pleural cavity (ventriculo-pleural shunt), and gallbladder. A shunt system can also be placed in the lumbar space of the spine and have the CSF redirected to the peritoneal cavity (Lumbar-peritoneal shunt). An alternative treatment for obstructive hydrocephalus in selected patients is the endoscopic third ventriculostomy (ETV), whereby a surgically created opening in the floor of the third ventricle allows the CSF to flow directly to the basal cisterns, thereby shortcutting any obstruction, as in aqueductal stenosis. This may or may not be appropriate based on individual anatomy. For infants, ETV is sometimes combined with choroid plexus cauterization, which reduces the amount of cerebrospinal fluid produced by the brain. The technique, known as ETV/CPC was pioneered in Uganda by neurosurgeon Ben Warf and is now in use in several U.S. hospitals.
Around 5 years of age, surgical correction may be necessary to prevent any worsening of the deformity. If the mother has dysplasia, caesarian delivery may be necessary. Craniofacial surgery may be necessary to correct skull defects. Coxa vara is treated by corrective femoral osteotomies. If there is brachial plexus irritation with pain and numbness, excision of the clavicular fragments can be performed to decompress it. In case of open fontanelle, appropriate headgear may be advised by the orthopedist for protection from injury.
Patients with symptomatic isthmic anterolisthesis are initially offered conservative treatment consisting of activity modification, pharmacological intervention, and a physical therapy consultation.
- Physical therapy can evaluate and address postural and compensatory movement abnormalities.
- Anti-inflammatory medications (NSAIDS) in combination with paracetamol (Tylenol) can be tried initially. If a severe radicular component is present, a short course of oral steroids such as Prednisone or Methylprednisolone can be considered. Epidural steroid injections, either interlaminal or transforaminal, performed under fluoroscopic guidance can help with severe radicular (leg) pain. Lumbosacral orthoses may be of benefit for some patients but should be used on a temporary basis to prevent spinal muscle atrophy and loss of proprioception.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
There is no cure or standard treatment for anencephaly and the prognosis for patients is death. Most anencephalic fetuses do not survive birth, accounting for 55% of non-aborted cases. Infants that are not stillborn will usually die within a few hours or days after birth from cardiorespiratory arrest.
Four recorded cases of anencephalic children surviving for longer periods of time are Stephanie Keene (better known as Baby K) of Falls Church, Virginia, USA, who lived for 2 years 174 days; Vitoria de Cristo, born in Brazil in January 2010 and surviving until July 17, 2012; Nickolas Coke of Pueblo, Colorado, USA, who lived for 3 years and 11 months, and died October 31, 2012; and Angela Morales, from Providence, Rhode Island, who live for 3 years and 9 months, and died December 16 2017.
In almost all cases, anencephalic infants are not aggressively resuscitated because there is no chance of the infant's ever achieving a conscious existence. Instead, the usual clinical practice is to offer hydration, nutrition, and comfort measures and to "let nature take its course". Artificial ventilation, surgery (to fix any co-existing congenital defects), and drug therapy (such as antibiotics) are usually regarded as futile efforts. Some clinicians and medical ethicists view even the provision of nutrition and hydration as medically futile.