Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are also surgical treatments for far-sightedness:
- Photorefractive keratectomy (PRK)
- Laser assisted in situ keratomileusis (LASIK)
- Refractive lens exchange (RLE)
- Laser epithelial keratomileusis (LASEK)
The simplest form of treatment for far-sightedness is the use of corrective lenses, eyeglasses or contact lenses. Eyeglasses used to correct far-sightedness have convex lenses.
Corrective lenses provide a range of vision correction, some as high as +4.0 diopter. Some with presbyopia choose varifocal or bifocal lenses to eliminate the need for a separate pair of reading glasses; specialized preparations of varifocals or bifocals usually require the services of an optometrist. Some newer bifocal or varifocal spectacle lenses attempt to correct both near and far vision with the same lens.
Contact lenses can also be used to correct the focusing loss that comes along with presbyopia. Multifocal contact lenses can be used to correct vision for both the near and the far. Some people choose contact lenses to correct one eye for near and one eye for far with a method called monovision.
Treatment of strabismic or anisometropic amblyopia consists of correcting the optical deficit (wearing the necessary spectacle prescription) and often forcing use of the amblyopic eye, by patching the good eye, or instilling topical atropine in the good eye, or both.
Concerning patching versus atropine, a drawback is seen in using atropine; the drops can have a side effect of creating nodules in the eye which a correctional ointment can counteract. One should also be wary of overpatching or overpenalizing the good eye when treating amblyopia, as this can create so-called "reverse amblyopia". Eye patching is usually done on a part-time schedule of about 4–6 hours a day. Treatment is continued as long as vision improves. It is not worthwhile continuing to patch for more than 6 months if no improvement continues. Treatment of individuals age 9 through to adulthood is possible through applied perceptual learning.
Deprivation amblyopia is treated by removing the opacity as soon as possible followed by patching or penalizing the good eye to encourage the use of the amblyopic eye. The earlier the treatment is initiated, the easier and faster the treatment is and the less psychologically damaging. Also, the chance of achieving 20/20 vision is greater if treatment is initiated early.
One of the German public health insurance providers, Barmer, has changed its policy to cover, as of 1 April 2014, the costs for an app for amblyopic children whose condition has so far not improved through patching. The app offers dedicated eye exercises which the patient performs while wearing an eyepatch.
New surgical procedures may also provide solutions for those who do not want to wear glasses or contacts, including the implantation of accommodative intraocular lenses. INTRACOR has now been approved in Europe for treatment of both eyes (turning both corneas into multifocal lenses and so dispensing with the need for reading glasses).
Another treatment option for the correction of presbyopia in patients with emmetropia, as well as in patients with myopia, hyperopia and astigmatism is laser blended vision. This procedure uses laser refractive surgery to correct the dominant eye mainly for distance vision and the nondominant eye mainly for near vision, while the depth of field (i.e. the range of distances at which the image is in focus) of each eye is increased. As a result of the increased depth of field, the brain merges the two images, creating a blend zone, i.e. a zone which is in focus for both eyes. This allows the patient to see near, intermediate and far without glasses. Some literature also suggests the benefits achieved include the brain learning to adapt, assimilating two images, one of which is out of focus. Over time, many patients report they are unaware one eye is out of focus.
Surgically implanted corneal inlays are another treatment option for presbyopia. Corneal inlays typically are implanted in the nondominant eye to minimize impact to binocular uncorrected distance vision. They seek to improve near vision in one of three ways: changing the central refractive index, increasing the depth of focus through the use of a pinhole, and reshaping the central cornea.
Low order aberrations (hyperopia, Myopia and regular astigmatism), are correctable by eyeglasses, soft contact lenses and refractive surgery. Neither spectacles nor soft contact lenses nor routine keratorefractive surgery adequately corrects high order aberrations. Significant high order aberration usually requires a rigid gas-permeable contact lens for optimal visual rehabilitation.
Customized Wavefront-guided refractive corneal laser treatments are designed to reduce existing aberrations and to help prevent the creation of new aberrations. The wavefront map of the eye may be transferred to a Lasik system and enable the surgeon to treat the aberration. Perfect alignment of the treatment and the pupil on which the Wavefront is measured is required, which is usually achieved through iris feature detection. An efficient eye tracking system and small spot size laser is necessary for treatment . Wavefront customization of ablation increases the depth of ablation because additional corneal tissue must be ablated to compensate for the high order aberrations. Actual results with Wavefront guided LASIK showed that not only it cannot remove HOA but also the optical aberrations are increased. However, the amount of increase in aberrations are less than conventional Lasik. Corneal optical aberrations after photorefractive keratectomy with a larger ablation zone and a transition zone are less pronounced and more physiologic than those associated with first-generation (5 mm) ablations with no transition zone. An upcoming systematic review will seek to compare the safety and effectiveness of wavefront excimer laser refractive surgery with conventional excimer laser refractive surgery, and will measure differences in residual higher order aberrations between the two procedures.
Aspherical intraocular lenses (IOLs) have been used clinically to compensate for positive corneal spherical aberrations. Although Aspherical IOLs may give better contrast sensitivity, it is doubtful, whether they have a beneficial effect on distance visual acuity. Conventional (not Aspherical) IOLs give better depth of focus and better near vision. The reason for improved depth of focus in conventional lenses is linked to residual spherical aberration. The small improvement in depth of focus with the conventional IOLs enhances uncorrected near vision and contribute to reading ability.
Wavefront customized lenses can be used in eyeglasses. Based on Wavefront map of the eye and with the use of laser a lens is shaped to compensate for the aberrations of the eye and then put in the eyeglasses. Ultraviolet Laser can alter the refractive index of curtain lens materials such as epoxy polymer on a point by point basis in order to generate the desired refractive profile.
Wavefront customized contact lenses can theoretically correct HOA. The rotation and decentration reduces the predictability of this method.
Risk factors such as UVB exposure and smoking can be addressed. Although no means of preventing cataracts has been scientifically proven, wearing sunglasses that counteract ultraviolet light may slow their development. While adequate intake of antioxidants (such as vitamins A, C, and E) has been thought to protect against the risk of cataracts, clinical trials have shown no benefit from supplements; though evidence is mixed, but weakly positive, for a potential protective effect of the nutrients lutein and zeaxanthin. Statin use is somewhat associated with a lower risk of nuclear sclerotic cataracts.
Although the best outcome is achieved if treatment is started before age 8, children older than age 12 and some adults can show improvement in the affected eye. Children from 9 to 11 who wore an eye patch and performed near-point activities (vision therapy) were four times as likely to show a two-line improvement on a standard 11-line eye chart than children with amblyopia who did not receive treatment. Adolescents aged 13 to 17 showed improvement, as well, albeit to a lesser degree than younger children. Whether such improvements are only temporary, however, is uncertain, particularly if treatment is discontinued.
Tentative evidence shows that perceptual training may be beneficial in adults.
Virtual-reality computer games where each eye receives different signals of the virtual world that the player's brain must combine to successfully play the game have shown some promise in improving both monocularity in the affected eye, as well as binocularity.
The postoperative recovery period (after removing the cataract) is usually short. The patient is usually ambulatory on the day of surgery, but is advised to move cautiously and avoid straining or heavy lifting for about a month. The eye is usually patched on the day of surgery and use of an eye shield at night is often suggested for several days after surgery.
In all types of surgery, the cataractous lens is removed and replaced with an artificial lens, known as an intraocular lens, which stays in the eye permanently. Intraocular lenses are usually monofocal, correcting for either distance or near vision. Multifocal lenses may be implanted to improve near and distance vision simultaneously, but these lenses may increase the chance of unsatisfactory vision.
In early stages of keratoconus, glasses or soft contact lenses can suffice to correct for the mild astigmatism. As the condition progresses, these may no longer provide the person with a satisfactory degree of visual acuity, and most practitioners will move to manage the condition with rigid contact lenses, known as rigid, gas-permeable, (RGP) lenses. RGP lenses provide a good level of visual correction, but do not arrest progression of the condition.
In people with keratoconus, rigid contact lenses improve vision by means of tear fluid filling the gap between the irregular corneal surface and the smooth regular inner surface of the lens, thereby creating the effect of a smoother cornea. Many specialized types of contact lenses have been developed for keratoconus, and affected people may seek out both doctors specialized in conditions of the cornea, and contact lens fitters who have experience managing people with keratoconus. The irregular cone presents a challenge and the fitter will endeavor to produce a lens with the optimal contact, stability and steepness. Some trial-and-error fitting may prove necessary.
Traditionally, contact lenses for keratoconus have been the 'hard' or RGP variety, although manufacturers have also produced specialized 'soft' or hydrophilic lenses and, most recently, silicone hydrogel lenses. A soft lens has a tendency to conform to the conical shape of the cornea, thus diminishing its effect. To counter this, hybrid lenses have been developed which are hard in the centre and encompassed by a soft skirt. However, soft or earlier generation hybrid lenses did not prove effective for every person. Early generation lenses have been discontinued. The fourth generation of hybrid lens technology has improved, giving more people an option that combines the comfort of a soft lens with the visual acuity of an RGP lens.
Convergence insufficiency may be treated with convergence exercises prescribed by an eyecare specialist trained in orthoptics or binocular vision anomalies. Some cases of convergence insufficiency are successfully managed by prescription of eyeglasses, sometimes with therapeutic prisms.
Pencil push-ups therapy is performed at home. Patient brings a pencil slowly to within 2–3 cm of the eye just above the nose about 15 minutes per day 5 times per week. Patients should record the closest distance that they could maintain fusion (keep the pencil from going double as long as possible) after each 5 minutes of therapy. Computer software may be used at home or in an orthoptists/vision therapists office to treat convergence insufficiency. A weekly 60-minute in-office therapy visit may be prescribed. This is generally accompanied with additional in home therapy.
In 2005, the Convergence Insufficiency Treatment Trial (CITT) published two randomized clinical studies. The first, published in Archives of Ophthalmology demonstrated that computer exercises when combined with office based vision therapy/orthoptics were more effective than "pencil pushups" or computer exercises alone for convergency insufficiency in 9- to 18-year-old children. The second found similar results for adults 19 to 30 years of age. In a bibliographic review of 2010, the CITT confirmed their view that office-based accommodative/vergence therapy is the most effective treatment of convergence insufficiency, and that substituting it in entirety or in part with other eye training approaches such as home-based therapy may offer advantages in cost but not in outcome. A later study of 2012 confirmed that orthoptic exercises led to longstanding improvements of the asthenopic symptoms of convergence sufficiency both in adults and in children. A 2011 Cochrane Review reaffirmed that office-based therapy is more effective than home-based therapy, though the evidence of effectiveness is a lot stronger for children than for the adult population.
Both positive fusional vergence (PFV) and negative fusional vergence (NFV) can be trained, and vergence training should normally include both.
Surgical correction options are also available, but the decision to proceed with surgery should be made with caution as convergence insufficiency generally does not improve with surgery. Bilateral medial rectus resection is the preferred type of surgery. However, the patient should be warned about the possibility of uncrossed diplopia at distance fixation after surgery. This typically resolves within 1–3 months postoperatively. The exophoria at near often recurs after several years, although most patients remain asymptomatic.
Cryotherapy (freezing) or laser photocoagulation are occasionally used alone to wall off a small area of retinal detachment so that the detachment does not spread.
The World Health Organization estimates that 80% of visual loss is either preventable or curable with treatment. This includes cataracts, onchocerciasis, trachoma, glaucoma, diabetic retinopathy, uncorrected refractive errors, and some cases of childhood blindness. The Center for Disease Control and Prevention estimates that half of blindness in the United States is preventable.
Vitrectomy is an increasingly used treatment for retinal detachment. It involves the removal of the vitreous gel and is usually combined with filling the eye with either a gas bubble (SF or CF gas) or silicone oil (PDMS). An advantage of using gas in this operation is that there is no myopic shift after the operation and gas is absorbed within a few weeks. PDMS, if used, needs to be removed after a period of 2–8 months depending on surgeon's preference. Silicone oil is more commonly used in cases associated with proliferative vitreo-retinopathy (PVR). A disadvantage is that a vitrectomy always leads to more rapid progression of a cataract in the operated eye. In many places vitrectomy is the most commonly performed operation for the treatment of retinal detachment. A recent Cochrane Review assessing various tamponade agents for patients with retinal detachment associated with PVR found that patients treated with CF gas and standard silicone oil had visual and anatomic advantages over patients using SF. Heavy silicone oil did not show any advantages over regular silicone oil.
Though no topical treatment has been proven to be effective in the treatment of Central Serous Retinopathy. Some doctors have attempted to use nonsteroidal topical medications to reduce the subretinal fluid associated with CSR. The nonsteroidal topical medications that are sometimes used to treat CSR are, Ketorolac, Diclofenac, or Bromfenac.
Aside from medical help, various sources provide information, rehabilitation, education, and work and social integration.
Spironolactone is a mineralocorticoid receptor antagonist that has been proven to help reduce the fluid associated with Central Serous Retinopathy. In a study noted by Acta Ophthalmologica also noted that the Spironolactone improved the visual acuity over the course of 8 weeks.
Epleronone is a mineralocorticoid receptor antagonist that has been proven to reduce the subretinal fluid that is present in Central Serous Retinopathy. This is a similar treatment to Spironolactone. In a study noted in International Journal of Ophthalmology, results showed Epleronone decreased the SRF both horizontally and vertically over time. Though after stopping the medication the fluid also appeared to return and patients needed further treatment.
Low dosage ibuprofen has been shown to quicken recovery in some cases, whilst avoiding naturally occurring blood thinners such as garlic, turmeric, cinnamon, which can enhance leakage from capillaries behind the retina.
It can be treated with laser coagulation, and more commonly with medication that stops and sometimes reverses the growth of blood vessels.
A randomized control trial found that bevacizumab and ranibizumab had similar efficacy, and reported no significant increase in adverse events with bevacizumab. A 2014 Cochrane review found that the systemic safety of bevacizumab and ranibizumab are similar when used to treat neovascular AMD, except for gastrointestinal disorders. Bevacizumab however is not FDA approved for treatment of macular degeneration. A controversy in the UK involved the off-label use of cheaper bevacizumab over the approved, but expensive, ranibizumab. Ranibizumab is a smaller fragment, Fab fragment, of the parent bevacizumab molecule specifically designed for eye injections. Other approved antiangiogenic drugs for the treatment of neo-vascular AMD include pegaptanib and aflibercept.
The American Academy of Ophthalmology practice guidelines do not recommend laser coagulation therapy for macular degeneration, but state that it may be useful in people with new blood vessels in the choroid outside of the fovea who don't respond to drug treatment. There is strong evidence that laser coagulation will result in the disappearance of drusen but does not affect choroidal neovascularisation. A 2007 Cochrane review on found that laser photocoagulation of new blood vessels in the choroid outside of the fovea is effective and economical method, but that the benefits are limited for vessels next to or below the fovea.
Photodynamic therapy has also been used to treat wet AMD. The drug verteporfin is administered intravenously; light of a certain wavelength is then applied to the abnormal blood vessels. This activates the verteporfin destroying the vessels.
Cataract surgery could possibly improve visual outcomes for people with AMD, though there have been concerns of surgery increasing the progression of AMD. A randomized controlled trial found that people who underwent immediate cataract surgery (within 2 weeks) had improved visual acuity and better quality of life outcomes than those who underwent delayed cataract surgery (6 months).
No medical or surgical treatment is available for this condition.
While preventive measures, such as taking breaks from activities that cause eye strain are suggested, there are certain treatments which a person suffering from the condition can take to ease the pain or discomfort that the affliction causes. Perhaps the most effective of these is to remove all light sources from a room and allow the eyes to relax in darkness. Free of needing to focus, the eyes will naturally relax over time, and relieve the discomfort that comes with the strain. Cool compresses also help to some degree, though care should be taken to not use anything cold enough to damage the eyes themselves (such as ice). A number of companies have released "computer glasses" which, through the use of specially tinted lenses, help alleviate many of the factors which cause eye strain, though they do not completely prevent it. Rather, they just make it harder to strain the eye.
There is generally no treatment to cure color deficiencies. ″The American Optometric Association reports a contact lens on one eye can increase the ability to differentiate between colors, though nothing can make you truly see the deficient color.″
It is extremely important to see an ophthalmologist regularly. Research indicates that supplements slow the disease and lessen the symptoms. Supplements such as Vitamin A, lutein, omega-3 fatty acid DHA have shown to help this disease. While supplements may help lessen the symptoms, retinitis itself is not curable. Additionally, devices such as low-vision magnifiers can be used to aid vision in patients suffering from despaired vision due to retinitis. Rehabilitation services may also aid the patient so that patients may use their vision in a more effective manner. Lastly, it is advisable to wear sunglasses even on gloomy days to protect your eyes from any ultraviolet light.
Optometrists can supply colored spectacle lenses or a single red-tint contact lens to wear on the non-dominant eye, but although this may improve discrimination of some colors, it can make other colors more difficult to distinguish. A 1981 review of various studies to evaluate the effect of the X-chrom contact lens concluded that, while the lens may allow the wearer to achieve a better score on certain color vision tests, it did not correct color vision in the natural environment. A case history using the X-Chrom lens for a rod monochromat is reported and an X-Chrom manual is online.
Lenses that filter certain wavelengths of light can allow people with a cone anomaly, but not dichromacy, to see better separation of colors, especially those with classic "red/green" color blindness. They work by notching out wavelengths that strongly stimulate both red and green cones in a deuter- or protanomalous person, improving the distinction between the two cones' signals. As of 2013, sunglasses that notch out color wavelengths are available commercially.
Current research on Retinitis includes studying stem cells, medications, gene therapies, and transplants to help treat/cure this condition. A study including patients with Retinitis was conducted by using gene therapy. Results from this study indicated that patients experienced some restored vision. Such studies indicate that the future may allow treatment of Retinitis by inserting healthy genes in the retina to cure this disease.