Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Body braces showed benefit in a randomised controlled trial.
The Milwaukee brace is one particular body brace that is often used to treat kyphosis in the US. Modern CAD/CAM braces are used in Europe to treat different types of kyphosis. These are much easier to wear and have better in-brace corrections than reported for the Milwaukee brace. Since there are different curve patterns (thoracic, thoracolumbar and lumbar), different types of brace are in use, with different advantages and disadvantages.
Scheuermann's disease is self-limiting after growth is complete, meaning that it generally runs its course and never presents further complication. Typically, however, once the patient is fully grown, the bones will maintain the deformity. For this reason, there are many treatment methods and options available that aim to correct the kyphosis while the spine is still growing, and especially aim to prevent it from worsening.
While there is no explanation for what causes Scheuermann's Disease, there are ways to treat it. For decades there has been a lot of controversy surrounding treatment options. For less extreme cases, manual medicine, physical therapy and/or back braces can help reverse or stop the kyphosis before it does become severe. Because the disease is often benign, and because back surgery includes many risks, surgery is usually considered a last resort for patients. In severe or extreme cases, patients may be treated through an extensive surgical procedure in an effort to prevent the disease from worsening or harming the body.
In Germany, a standard treatment for both Scheuermann's disease and lumbar kyphosis is the Schroth method, a system of specialized physical therapy for scoliosis and related spinal deformities. The method has been shown to reduce pain and decrease kyphotic angle significantly during an inpatient treatment program.
In Germany, a standard treatment for both Scheuermann's disease and lumbar kyphosis is the Schroth method, a system of physical therapy for scoliosis and related spinal deformities.
It involves lying supine, placing a pillow under the scapular region and posteriorly stretching the cervical spine.
The Boston brace is a plastic exterior that can be made with a small amount of lordosis to minimize stresses on discs that have experienced herniated discs.
In the case where Ehlers Danlos syndrome (EDS) is responsible, being properly fitted with a customized brace may be a solution to avoid strain and limit the frequency of instability.
Since lumbar hyperlordosis is usually caused by habitual poor posture, rather than by an inherent physical defect like scoliosis or hyperkyphosis, it can be reversed. This can be accomplished by stretching the lower back, hip-flexors, hamstring muscles, and strengthening abdominal muscles.Dancers should ensure that they don't strain themselves during dance rehearsals and performances. To help with lifts, the concept of isometric contraction, during which the length of muscle remains the same during contraction, is important for stability and posture.
Lumbar hyperlordosis may be treated by strengthening the hip extensors on the back of the thighs, and by stretching the hip flexors on the front of the thighs.
Only the muscles on the front and on the back of the thighs can rotate the pelvis forward or backward while in a standing position because they can discharge the force on the ground through the legs and feet. Abdominal muscles and erector spinae can't discharge force on an anchor point while standing, unless one is holding his hands somewhere, hence their function will be to flex or extend the torso, not the hip.
Back hyper-extensions on a Roman chair or inflatable ball will strengthen all the posterior chain and will treat hyperlordosis. So too will stiff legged deadlifts and supine hip lifts and any other similar movement strengthening the posterior chain "without involving the hip flexors" in the front of the thighs. Abdominal exercises could be avoided altogether if they stimulate too much the psoas and the other hip flexors.
Controversy regarding the degree to which manipulative therapy can help a patient still exists. If therapeutic measures reduce symptoms, but not the measurable degree of lordotic curvature, this could be viewed as a successful outcome of treatment, though based solely on subjective data. The presence of measurable abnormality does not automatically equate with a level of reported symptoms.
Scheuermann's disease can be successfully corrected with surgical procedures, almost all of which include spinal fusion and hardware instrumentation, i.e., rods, pedicle screws, etc. While many patients are typically interested in getting surgery for their correction, it is important to realize the surgery aims to reduce pain, and not cosmetic defect. As always, surgical intervention should be used as a last resort once conservative treatment fails or the patient's health is in imminent danger as any surgical procedure is not without risk; however, the chances of complication are relatively low and the surgeries are often successful.
One of the largest debates surrounding Scheuermann's disease correction is the use of very different correction procedures. There are different techniques to correct kyphosis; usually the differences being posterior/anterior entry or posterior entry (rear) only. The classic surgical procedure partially entails entering two titanium rods, each roughly one and a half feet long (depending on the size of the khyphosis), into the back on either side of the spine. Eight titanium screws and hardware are drilled through the bone and secure the rods onto either side of the spine. On the internal-facing side of the spine, ligaments (which can be too short, pulling the spine into the general shape of kyphosis) must be surgically cut or released, not only stopping part of the cause of the kyphosis, but also allowing the titanium rods to pull the spine into a more natural position. Normally, the damaged discs between the troubled vertebrae (wedged vertebrae) are removed and replaced with bone grafting from the hip or other parts of the vertebrae, which once healed or 'fused' will solidify. The titanium instrumentation holds everything in place during healing and is not necessary once fusion completes. Recovery begins in the hospital and depending on whether the operation is one- or two-stage the patient can expect to be in hospital for minimum of a week, possibly longer depending on recovery.
They will then often be required to wear a brace for several months to ensure the spine heals correctly leaving the patient with the correct posture. The titanium instrumentation can stay in the body permanently, or be removed years later. Patients undergoing surgery for Scheuermann's disease often need physical therapy to manage pain and mobility, however their range of motion is generally not limited very much. Recovery from kyphosis correction surgery can be very long; typically patients are not allowed to lift anything above 5 or 10 pounds for 6 months to a year. Many are out of work for at least 6 months. However, once the fusion is solidified, most patients can return to their usual lifestyle within one to two years.
The traditional medical management of scoliosis is complex and is determined by the severity of the curvature and skeletal maturity, which together help predict the likelihood of progression.
The conventional options for children and adolescents are:
1. Observation
2. Bracing
3. Surgery
For adults, treatment usually focuses on relieving any pain:
1. Painkilling medication
2. Bracing
3. Surgery
Treatment for idiopathic scoliosis also depends upon the severity of the curvature, the spine’s potential for further growth, and the risk that the curvature will progress. Mild scoliosis (less than 30 degrees deviation) may simply be monitored and treated with exercise. Moderately severe scoliosis (30–45 degrees) in a child who is still growing may require bracing. Severe curvatures that rapidly progresses may be treated surgically with spinal rod placement. Bracing may prevent a progressive curvature, but evidence for this is not very strong. In all cases, early intervention offers the best results.
A growing body of scientific research testifies to the efficacy of specialized treatment programs of physical therapy, which may include bracing.
Surgery is usually recommended by orthopedists for curves with a high likelihood of progression (i.e., greater than 45 to 50° of magnitude), curves that would be cosmetically unacceptable as an adult, curves in patients with spina bifida and cerebral palsy that interfere with sitting and care, and curves that affect physiological functions such as breathing.
Surgery is indicated by the Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT) at 45 degrees to 50 degrees and by the Scoliosis Research Society (SRS) at a Cobb angle of 45 degrees. SOSORT uses the 45-degree to 50-degree threshold as a result of the well-documented, plus or minus five degrees measurement error that can occur while measuring Cobb angles.
Surgeons that are specialized in spine surgery are the ones who perform surgery for scoliosis. To completely straighten a scoliotic spine is usually impossible, however for the most part, significant corrections are achieved.
The two main types of surgery are:
- Anterior fusion: This surgical approach is through an incision at the side of the chest wall.
- Posterior fusion: This surgical approach is through an incision on the back and involves the use of metal instrumentation to correct the curve.
One or both of these surgical procedures may be needed. The surgery may be done in one or two stages and, on average, takes four to eight hours.
If non-pharmacological measures are not effective, medications may be tried.
- Non-steroidal anti-inflammatory drugs (NSAIDs) are typically tried first. NSAIDs have been shown to be more effective than placebo, and are usually more effective than paracetamol (acetaminophen).
- In severe back pain not relieved by NSAIDs or acetaminophen, opioids may be used. However, long-term use of opioids has not been proven to be effective at treating back pain. Opioids have not always been shown to be better than placebo for chronic back pain when the risks and benefits are considered.
- Skeletal muscle relaxers may also be used. Their short term use has been shown to be effective in the relief of acute back pain. However, the evidence of this effect has been disputed, and these medications do have negative side-effects.
- In people with nerve root pain and acute radiculopathy, there is evidence that a single dose of steroids, such as dexamethasone, may provide pain relief.
- Epidural corticosteroid injection (ESI) is a procedure in which steroid medications are injected into the epidural space. The steroid medications reduce inflammation and thus decrease pain and improve function. ESI has long been used to both diagnose and treat back pain, although recent studies have shown a lack of efficacy in treating low back pain.
Back pain is generally treated with non-pharmacological therapy first, as it typically resolves without the use of medication. Superficial heat and massage, acupuncture, and spinal manipulation therapy may be recommended.
- Heat therapy is useful for back spasms or other conditions. A review concluded that heat therapy can reduce symptoms of acute and sub-acute low-back pain.
- Regular activity and gentle stretching exercises is encouraged in uncomplicated back pain, and is associated with better long-term outcomes. Physical therapy to strengthen the muscles in the abdomen and around the spine may also be recommended. These exercises are associated with better patient satisfaction, although it has not been shown to provide functional improvement. However, one study found that exercise is effective for chronic back pain, but not for acute pain. If used, they should be performed under supervision of a licensed health professional.
- Massage therapy may give short-term pain relief, but not functional improvement, for those with acute lower back pain. It may also give short-term pain relief and functional improvement for those with long-term (chronic) and sub-acute lower pack pain, but this benefit does not appear to be sustained after 6 months of treatment. There does not appear to be any serious adverse effects associated with massage.
- Acupuncture may provide some relief for back pain. However, further research with stronger evidence needs to be done.
- Spinal manipulation is a widely-used method of treating back pain, although there is no evidence of long-term benefits.
- "Back school" is an intervention that consists of both education and physical exercises. A 2016 Cochrane review found the evidence concerning back school to be very low quality and was not able to make generalizations as to whether back school is effective or not.
The vertebral column, also known as the backbone or spine, is part of the axial skeleton. The vertebral column is the defining characteristic of a vertebrate, in which the notochord (a flexible rod of uniform composition) found in all chordates has been replaced by a segmented series of bones—vertebrae separated by intervertebral discs. The vertebral column houses the spinal canal, a cavity that encloses and protects the spinal cord.
There are about 50,000 species of animals that have a vertebral column. The human vertebral column is one of the most-studied examples.
According to the recommendations made by the Quebec Task Force, treatment for individuals with whiplash associated disorders grade 1–3 may include non-narcotic analgesics. Non-steroidal anti-inflammatory drugs may also be prescribed in the case of WAD 2 and WAD 3, but their use should be limited to a maximum of three weeks. Botulinum toxin A is used to treat involuntary muscle contraction and spasms. Botulinum toxin type-A is only temporary and repeated injections need to take place in order to feel the effects.
According to a year long follow-up study in 2008 on 186 patients, the WAD-classification and Quebec Task Force regimen were not linked to better clinical outcomes.
For idiopathic toe walking in young children, doctors may prefer to watch and wait: the child may "outgrow" the condition. If there is a reduction in the child's range of motion, there are several options.
- Wearing a brace or splint either during the day, night or both which limits the ability of the child to walk on their toes and stretches the Achilles tendon. One type of brace used is an AFO (ankle-foot orthosis).
- Serial casting where the foot is cast with the tendon stretched, and the cast is changed weekly with progressive stretching. However, these casts may not be changed weekly and instead every 2-3 weeks.
- Botox therapy is used to paralyze the calf muscles to reduce the opposition of the muscles to stretching the Achilles tendon, usually together with serial casting or splinting.
- If conservative measures fail to correct the toe walking after about 12–24 months, surgical lengthening of the tendon is an option. The surgery is typically done under full anesthesia but if there are no issues, the child is released the same day. After the surgery, a below-the-knee walking cast is worn for six weeks and then an AFO is worn to protect the tendon for several months.
For toe walking which results from more serious neuro-muscular conditions, additional specialists may need to be consulted.
Presence at birth is extremely rare and associated with other congenital anomalies such as proximal femoral focal deficiency, fibular hemimelia or anomalies in other part of the body such as cleidocranial dyastosis. The femoral deformity is present in the subtrochantric area where the bone is bent. The cortices are thickened and may be associated with overlying skin dimples. External rotation of the femur with valgus deformity of knee may be noted. This condition does not resolve and requires surgical management. Surgical management includes valgus osteotomy to improve hip biomechanics and length and rotational osteotomy to correct retroversion and lengthening.
A neutral spine or good posture refers to the "three natural curves [that] are present in a healthy spine." Looking directly at the front or back of the body, the 33 vertebrae in the spinal column should appear completely vertical. From a side view, the cervical (neck) region of the spine (C1-C7) is bent inward, the thoracic (upper back) region (T1-T12) bends outward, and the lumbar (lower back) region (L1-L5) bends inward. The sacrum (tailbone area) (S1-S5 fused) and coccyx (on average 4 fused) rest between the pelvic bones. A neutral pelvis indicates the anterior superior iliac spines and pubic symphysis fall in the same vertical line.
A doctor will typically evaluate whether there is bilateral (both legs) toe walking, what the child's range of motion is (how far they can flex their feet) and perform a basic neurological exam. Treatment will depend on the cause of the condition.
Congenital vertebral anomalies are a collection of malformations of the spine. Most around 85% are not clinically significant, but they can cause compression of the spinal cord by deforming the vertebral canal or causing instability. This condition occurs in the womb. Congenital vertebral anomalies include alterations of the shape and number of vertebrae.
Coxa vara is a deformity of the hip, whereby the angle between the head and the shaft of the femur is reduced to less than 120 degrees. This results in the leg being shortened, and the development of a limp. It is commonly caused by injury, such as a fracture. It can also occur when the bone tissue in the neck of the femur is softer than normal, causing it to bend under the weight of the body. This may either be congenital or the result of a bone disorder. The most common cause of coxa vara is either congenital or developmental. Other common causes include metabolic bone diseases (e.g. Paget's disease of bone), post-Perthes deformity, osteomyelitis, and post traumatic (due to improper healing of a fracture between the greater and lesser trochanter). Shepherd's Crook deformity is a severe form of coxa vara where the proximal femur is severely deformed with a reduction in the neck shaft angle beyond 90 degrees. It is most commonly a sequela of osteogenesis imperfecta, Pagets disease, osteomyelitis, tumour and tumour-like conditions (e.g. fibrous dysplasia).
Coxa vara can happen in cleidocranial dysostosis.
Swayback refers to abnormal bent-back postures in humans and in quadrupeds, especially horses.
Excessive or abnormal spinal curvature is classed as a spinal disease or dorsopathy and includes the following abnormal curvatures:
- Kyphosis is an exaggerated kyphotic (concave) curvature in the thoracic region, also called hyperkyphosis. This produces the so-called "humpback" or "dowager's hump", a condition commonly resulting from osteoporosis.
- Lordosis as an exaggerated lordotic (convex) curvature of the lumbar region, is known as lumbar hyperlordosis and also as "swayback". Temporary lordosis is common during pregnancy.
- Scoliosis, lateral curvature, is the most common abnormal curvature, occurring in 0.5% of the population. It is more common among females and may result from unequal growth of the two sides of one or more vertebrae, so that they do not fuse properly. It can also be caused by pulmonary atelectasis (partial or complete deflation of one or more lobes of the lungs) as observed in asthma or pneumothorax.
- Kyphoscoliosis, a combination of kyphosis and scoliosis.
Symptoms remaining more than six months after trauma is labelled Whiplash syndrome. The main purpose with early rehabilitation is to reduce the risk for development of Whiplash syndrome. Early rehabilitation for whiplash depends on the grade category. It can be categorized as grade 0 being no pain to grade 4 with a cervical bone fracture or dislocation. Grade 4 obviously needs admission to hospital while grade 0-3 can be managed as outpatients. The symptoms from the potential injury to the cervical spine may be debilitating, and pain was reported to be one of the biggest stressor events experienced in daily living, so it is important to begin rehabilitation immediately to prevent future pain.
Current research supports that active mobilization rather than a soft collar results in a more prompt recovery both in the short and long term perspective. Furthermore, Schnabel and colleagues stated that the soft collar is not a suitable medium for rehabilitation, and the best way of recovery is to include an active rehabilitation program that includes physical therapy exercises and postural modifications. Another study found patients who participated in active therapy shortly after injury increased mobilization of the neck with significantly less pain within four weeks when compared to patients using a cervical collar.
Active treatments are light repetitive exercises that work the area to maintain normality. Basic information is also given to teach the patient that exercises as instructed will not cause any damage to their neck. These exercises are done at home or under the care of a health professional. When beginning a rehabilitation regimen, it's important to begin with slow movements which include cervical rotation until pain threshold three to five times per day, flexion and extension of the shoulder joint by moving the arms up and down two to three times, and combining shoulder raises while inhaling and releasing the shoulder raise while exhaling. Soderlund and colleagues also recommend that these exercises should be done every day until pain starts to dissipate. Early mobilization is important for preventing chronic pain, but pain experienced from these exercises might cause psychological symptoms that could have negative impact on recovery. Rosenfeld found that doing active exercises as often as once every waken hour during one month after trauma decreases the need for sick leave three years after trauma from 25% to 5.7%.
Passive treatments such as acupuncture, massage therapy, and stimulation may sometimes be used as a complement to active exercises. Return to normal activities of daily living should be encouraged as soon as possible to maximize and expedite full recovery.
For chronic whiplash patients, rehabilitation is recommended. Patients who entered a rehabilitation program said they were able to control their pain, they continued to use strategies that were taught to them, and were able to go back to their daily activities.
Scoliosis is well established and even evaluated at an early age. It is typically quantified using the standardized Cobb angle method. This method consists of measuring the degree of deformity by the angle between two successive vertebrae. The Cobb method was accepted by the Scoliosis Research Society (SRS) in 1966. It serves as the standard method for quantification of scoliosis deformities. Sagittal plane posture aberrations such as cervical and lumbar lordosis and thoracic kyphosis have yet to be quantified due to considerable inter-individual variability in normal sagittal curvature. The Cobb method was also one of the first techniques used to quantify sagittal deformity. As a 2D measurement technique it has limitations and new techniques are being proposed for measurement of these curvatures. Most recently, 3D imaging techniques using computed tomography (CT) and magnetic resonance (MR) have been attempted. These techniques are promising but lack the reliability and validity necessary to be used as a reference for clinical purposes.
Posture assessment has also become quite popular in many practical environments like the personal training and sports conditioning settings. The need for reliable methods of posture assessment as a screening tool is warranted. Current available programs such as those through the National Posture Institute (NPI) and Posture Print are recommended for the practical setting but cost close to $1000 and are clearly a profiteering scam by individuals not at all concerned with human well-being.
Chronic deviations from neutral spine lead to improper posture, increased stress on the back and causes discomfort and damage. People who sit for long hours on the job are susceptible to a number of misalignments.
"Neutral spine" is ideally maintained while sitting, standing, and sleeping.
Swayback posture in humans is characterised by the posterior displacement of the rib cage in comparison to the pelvis. It looks like the person has a hyperextension of the natural lordosis, however this is not necessarily the case. Most sway-back exhibits a posteriorly tilted pelvis; the lumbar region is usually flat (too flexed) and not hyperlordotic (too extended).
Hemivertebrae are wedge-shaped vertebrae and therefore can cause an angle in the spine (such as kyphosis, scoliosis, and lordosis).
Among the congenital vertebral anomalies, hemivertebrae are the most likely to cause neurologic problems. The most common location is the midthoracic vertebrae, especially the eighth (T8). Neurologic signs result from severe angulation of the spine, narrowing of the spinal canal, instability of the spine, and luxation or fracture of the vertebrae. Signs include rear limb weakness or paralysis, urinary or fecal incontinence, and spinal pain. Most cases of hemivertebrae have no or mild symptoms, so treatment is usually conservative. Severe cases may respond to surgical spinal cord decompression and vertebral stabilization.
Associations
Recognised associations are many and include:
Aicardi syndrome,
cleidocranial dysostosis,
gastroschisis 3,
Gorlin syndrome,
fetal pyelectasis 3,
Jarcho-Levin syndrome,
OEIS complex,
VACTERL association.
The probable cause of hemivertebrae is a lack of blood supply causing part of the vertebrae not to form.
Hemivertebrae in dogs are most common in the tail, resulting in a screw shape.
Prevention of osteomalacia rests on having an adequate intake of vitamin D and calcium. Vitamin D3 Supplementation is often needed due to the scarcity of Vitamin D sources in the modern diet.