Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment consists primarily of immunosuppressive drugs (e.g., hydroxychloroquine and corticosteroids). An interesting second line drug is methotrexate in its low-dose schedule. In 2011, the U.S. Food and Drug Administration (FDA) approved the first new drug for lupus in more than 50 years to be used in the US, belimumab. In addition to medicative therapy, due to the psychological and social impacts that Lupus may have on an individual, Cognitive Behavioural Therapy (CBT) has also been demonstrated to be effective in reducing stress, anxiety, and depression in lupus sufferers.
There is no cure for scleroderma, although relief of symptoms is often achieved. These include
- Raynaud's phenomenon with vasodilators such as calcium channel blockers, alpha blockers, serotonin receptor antagonists, angiotensin II receptor inhibitors, statins, local nitrates or iloprost
- Digital ulcers with phosphodiesterase 5 inhibitors (e.g., sildenafil) or iloprost
- Prevention of new digital ulcers with bosentan
- Malnutrition, secondary to intestinal flora overgrowth with tetracycline antibiotics like tetracycline
- Alveolitis with cyclophosphamide, azathioprine with or without corticosteroids
- Pulmonary arterial hypertension with endothelin receptor antagonists, phosphodiesterase 5 inhibitors and prostanoids
- Gastrooesophageal reflux disease with antacids or prokinetics
- Kidney crises with angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists
Systemic disease-modifying treatment with immunosuppressants is often used. Immunosuppressants used in its treatment include azathioprine, methotrexate, cyclophosphamide, mycophenolate, intravenous immunoglobulin, rituximab, sirolimus, alefacept and the tyrosine kinase inhibitors, imatinib, nilotinib and dasatinib.
Experimental therapies under investigation include endothelin receptor antagonsits, tyrosine kinase inhibitors, beta-glycan peptides, halofuginone, basiliximab, alemtuzumab, abatacept and haematopoietic stem cell transplantation.
Treatment of mixed cryoglobulinemic disease is, similar to type I disease, directed toward treating any underlying disorder. This includes malignant (particularly Waldenström's macroglobulinemia in type II disease), infectious, or autoimmune diseases in type II and III disease. Recently, evidence of hepatitis C infection has been reported in the majority of mixed disease cases with rates being 70-90% in areas with high incidences of hepatitis C. The most effective therapy for hepatitis C-associated cryoglobulinemic disease consists of a combination of anti-viral drugs, pegylated INFα and ribavirin; depletion of B cells using rituximab in combination with antiviral therapy or used alone in patients refractory to antiviral therapy has also proven successful in treating the hepatitis C-associated disease. Data on the treatment of infectious causes other than hepatitis C for the mixed disease are limited. A current recommendation treats the underlying disease with appropriate antiviral, anti-bacterial, or anti-fungal agents, if available; in cases refractory to an appropriate drug, the addition of immunosuppressive drugs to the therapeutic regimen may improve results. Mixed cryoglobulinemic disease associated with autoimmune disorders is treated with immunosuppressive drugs: combination of a corticosteroid with either cyclophosphamide, azathioprine, or mycophenolate or combination of a corticosteroid with rituximab have been used successfully to treated mixed disease associated with autoimmune disorders.
People affected by the severest, often life-threatening, complications of cryoglobulinemic disease require urgent plasmapharesis and/or plasma exchange in order to rapidly reduce the circulating levels of their cryoglobulins. Complications commonly requiring this intervention include: hyperviscosity disease with severe symptoms of neurological (e.g. stroke, mental impairment, and myelitis) and/or cardiovascular (e.g., congestive heart failure, myocardial infarction) disturbances; vasculitis-driven intestinal ischemia, intestinal perforation, cholecystitis, or pancreatitis, causing acute abdominal pain, general malaise, fever, and/or bloody bowel movements; vasculitis-driven pulmonary disturbances (e.g. coughing up blood, acute respiratory failure, X-ray evidence of diffuse pulmonary infiltrates caused by diffuse alveolar hemorrhage); and severe kidney dysfunction due to intravascular deposition of immunoglobulins or vasculitis. Along with this urgent treatment, severely symptomatic patients are commonly started on therapy to treat any underlying disease; this treatment is often supplemented with anti-inflammatory drugs such as corticosteroids (e.g., dexamethasone) and/or immunosuppressive drugs. Cases where no underlying disease is known are also often treated with the latter corticosteroid and immunosuppressive medications.
First-line therapy for disseminated or localized instances of pyoderma gangrenosum is systemic treatment by corticosteroids and ciclosporin. Topical application of clobetasol, mupirocin, and gentamicin alternated with tacrolimus can be effective.
Pyoderma gangrenosum ulcers demonstrate pathergy, that is, a worsening in response to minor trauma or surgical debridement. Significant care should be taken with dressing changes to prevent potentially rapid wound growth. Many patients respond differently to different types of treatment, for example some benefit from a moist environment, so treatment should be carefully evaluated at each stage.
Papules that begin as small "spouts" can be treated with Dakins Solution to prevent infection and wound clusters also benefit from this disinfectant. Wet to dry applications of Dakins can defeat spread of interior infection. Heavy drainage can be offset with Coban dressings. Grafting is not recommended due to tissue necrosis.
If ineffective, alternative therapeutic procedures include systemic treatment with corticosteroids and mycophenolate mofetil; mycophenolate mofetil and ciclosporin; tacrolimus; thalidomide; infliximab; or plasmapheresis.
There is currently a phase III trial for the use of the IL-1B modulating agent gevokizumab in treating the ulcers of pyoderma gangrenosum.
There is no effective treatment for this condition. It has been reported that clearance of lesions can be done with melphalan and cyclophosphamide alone or in combination with prednisone. Both isotretinoin and etretinate have also been shown to improve the conditions. All medications listed can cause adverse symptoms, with isotretinoin and etretinate particularly dangerous since they are both teratogens. Other attempted treatments include interferon-alpha, cyclosporine, PUVA photochemotherapy, electron-beam therapy, IVIg, and dermabrasion. However, the overall prognosis for the disease is poor. There are reported instances of remission of the disease when treated with a combination of Revlimid and Dexamethasone over a 24-month period.
Azathioprine is a steroid-sparing agent used in combination with Prednisone. It functions by inhibiting RNA and DNA synthesis.
Ciclosporin is an immunosuppressive agent most often used in organ transplantation that has demonstrated to be effective with skin disorders. It functions by lessening production of autoantibodies and therefore diminishing the development of blisters and erosions. The mechanism of action is by inhibiting the production of T lymphocytes and lymphokines.
Topical corticosteroid preparations are the most effective agents when used continuously for 8 weeks; retinoids and coal tar were found to be of limited benefit and may be no better than placebo. Greater benefit has been observed with very potent corticosteroids when compared to potent corticosteroids. Vitamin D analogues such as paricalcitol were found to be significantly superior to placebo. Combination therapy with vitamin D and a corticosteroid was superior to either treatment alone and vitamin D was found to be superior to coal tar for chronic plaque psoriasis.
Moisturizers and emollients such as mineral oil, petroleum jelly, calcipotriol, and decubal (an oil-in-water emollient) were found to increase the clearance of psoriatic plaques. Emollients have been shown to be even more effective at clearing psoriatic plaques when combined with phototherapy. However, certain emollients have no impact on psoriasis plaque clearance or may even decrease the clearance achieved with phototherapy. The emollient salicylic acid is structurally similar to para-aminobenzoic acid (PABA), commonly found in sunscreen, and is known to interfere with phototherapy in psoriasis. Coconut oil, when used as an emollient in psoriasis, has been found to decrease plaque clearance with phototherapy. Medicated creams and ointments applied directly to psoriatic plaques can help reduce inflammation, remove built-up scale, reduce skin turnover, and clear affected skin of plaques. Ointment and creams containing coal tar, dithranol, corticosteroids (i.e. desoximetasone), fluocinonide, vitamin D analogs (for example, calcipotriol), and retinoids are routinely used. The use of the finger tip unit may be helpful in guiding how much topical treatment to use.
Vitamin D analogues may be useful with steroids; however, alone have a higher rate of side effects. They may allow less steroids to be used.
Another topical therapy used to treat psoriasis is a form of balneotherapy, which involves daily baths in the Dead Sea. This is usually done for four weeks with the benefit attributed to sun exposure and specifically UVB light. This is cost-effective and it has been propagated as an effective way to treat psoriasis without medication. Decreases of PASI scores greater than 75% and remission for several months have commonly been observed. Side-effects may be mild such as itchiness, folliculitis, sunburn, poikiloderma, and a theoretical risk of nonmelanoma skin cancer or melanoma has been suggested. However, more recent studies have determined that there does not appear to be increased risk of melanoma in the long-term. Data are inconclusive with respect to nonmelanoma skin cancer risk, but support the idea that the therapy is associated with an increased risk of benign forms of sun-induced skin damage such as, but not limited to, actinic elastosis or liver spots. Dead Sea balneotherapy is also effective for psoriatic arthritis.
Psoriasis resistant to topical treatment and phototherapy may be treated with systemic therapies including medications by mouth or injectable treatments. People undergoing systemic treatment must have regular blood and liver function tests to check for medication toxicities. Pregnancy must be avoided for most of these treatments. The majority of people experience a recurrence of psoriasis after systemic treatment is discontinued.
Non-biologic systemic treatments frequently used for psoriasis include methotrexate, ciclosporin, hydroxycarbamide, fumarates such as dimethyl fumarate, and retinoids. Methotrexate and ciclosporin are drugs that suppress the immune system; retinoids are synthetic forms of vitamin A. These agents are also regarded as first-line treatments for psoriatic erythroderma. Oral corticosteroids should not be used, for they can severely flare psoriasis upon their discontinuation.
Biologics are manufactured proteins that interrupt the immune process involved in psoriasis. Unlike generalised immunosuppressive drug therapies such as methotrexate, biologics target specific aspects of the immune system contributing to psoriasis. These medications are generally well-tolerated and limited long-term outcome data have demonstrated biologics to be safe for long-term use in moderate to severe plaque psoriasis. However, due to their immunosuppressive actions, biologics have been associated with a small increase in the risk for infection.
Guidelines regard biologics as third-line treatment for plaque psoriasis following inadequate response to topical treatment, phototherapy, and non-biologic systemic treatments. The safety of biologics during pregnancy has not been assessed. European guidelines recommend avoiding biologics if a pregnancy is planned; anti-TNF therapies such as infliximab are not recommended for use in chronic carriers of the hepatitis B virus or individuals infected with HIV.
Several monoclonal antibodies target cytokines, the molecules that cells use to send inflammatory signals to each other. TNF-α is one of the main executor inflammatory cytokines. Four monoclonal antibodies (MAbs) (infliximab, adalimumab, golimumab, and certolizumab pegol) and one recombinant TNF-α decoy receptor, etanercept, have been developed to inhibit TNF-α signaling. Additional monoclonal antibodies, such as ixekizumab, have been developed against pro-inflammatory cytokines and inhibit the inflammatory pathway at a different point than the anti-TNF-α antibodies. IL-12 and IL-23 share a common domain, p40, which is the target of the recently FDA-approved ustekinumab. In 2017 the US FDA approved guselkumab for plaque psoriasis.
Two drugs that target T cells are efalizumab and alefacept. Efalizumab is a monoclonal antibody that specifically targets the CD11a subunit of LFA-1. It also blocks the adhesion molecules on the endothelial cells that line blood vessels, which attract T cells. Efalizumab was voluntarily withdrawn from the European market in February 2009 and from the US market in June 2009 by the manufacturer due to the medication's association with cases of progressive multifocal leukoencephalopathy. Alefacept also blocks the molecules that dendritic cells use to communicate with T cells and even causes natural killer cells to kill T cells as a way of controlling inflammation. Apremilast may also be used.
Individuals with psoriasis may develop neutralizing antibodies against monoclonal antibodies. Neutralization occurs when an antidrug antibody prevents a monoclonal antibody such as infliximab from binding antigen in a laboratory test. Specifically, neutralization occurs when the antidrug antibody binds to infliximab's antigen binding site instead of TNF-α. When infliximab no longer binds tumor necrosis factor alpha, it no longer decreases inflammation, and psoriasis may worsen. Neutralizing antibodies have not been reported against etanercept, a biologic drug that is a fusion protein composed of two TNF-α receptors. The lack of neutralizing antibodies against etanercept is probably secondary to the innate presence of the TNF-α receptor, and the development of immune tolerance.
Treatments include class I topical steroids (clobetasol, halobetasol, etc.) which in some studies have proven to be equally effective as systemic, or pill, therapy and somewhat safer. However, in difficult-to-manage or widespread cases, systemic prednisone and powerful steroid-free immunosuppressant medications, such as methotrexate, azathioprine or mycophenolate mofetil, may be appropriate. Antibiotics such as tetracycline or erythromycin may also control the disease, particularly in patients who cannot use corticosteroids. The anti-CD20 monoclonal antibody rituximab has been found to be effective in treating some otherwise refractory cases of bullous pemphigoid.
IgA-mediated pemphigoid can often be difficult to treat even with usually effective medications such as rituximab.
Prurigo nodularis is very hard to treat, but current therapies include steroids, vitamins, cryosurgery, thalidomide and UVB light. In the event that staphylococcus or other infection is present, antibiotics have proven effective, but tend to cause more harm than good for this particular disease.
A physician may administer a strong dose of prednisone, which will almost immediately stop the itch/scratch cycle. However, cessation of steroids allows relapse to occur, usually within a few weeks. Horiuchi "et al" recently reported significant improvement in PN with antibiotic therapy.
Another drug a physician may administer is Apo-Azathioprine. Azathioprine, also known by its brand name Imuran, is an immunosuppressive drug used in organ transplantation and autoimmune diseases and belongs to the chemical class of purine analogues.
Many different treatments have been reported for cutaneous lichen planus, however there is a general lack of evidence of efficacy for any treatment. Treatments tend to be prolonged, partially effective and disappointing. The mainstay of localized skin lesions is topical steroids. Additional treatments include retinoids, such as acitretin, or sulfasalazine. Narrow band UVB phototherapy or systemic PUVA therapy are known treatment modalities for generalized disease.
Reassurance that the condition is benign, elimination of precipitating factors and improving oral hygiene are considered initial management for symptomatic OLP, and these measures are reported to be useful. Treatment usually involves topical corticosteroids (such as betamethasone, clobetasol, dexamethasone, and triamcinolone) and analgesics, or if these are ineffective and the condition is severe, the systemic corticosteroids may be used. Calcineurin inhibitors (such as pimecrolimus, tacrolimus or cyclosporin) are sometimes used.
Due to the lack of knowledge around the underlying mechanism of MAP, an effective treatment method has not been developed. Treatment for this condition is symptomatic. However, several treatment methods have been tested and are still being developed as more information regarding the condition is found. Fibrinolytic and immunosuppresive therapeutic regimens were tested and found to be mostly unsuccessful as treatment methods.
After treating conditions comorbid with Degos disease, physicians have recently found improvement in symptoms with the use of eculizumab and treprostinil. Discovered by dermatopathologist, Cynthia Magro, response to eculizumab is often immediate and dramatic, but has been of limited duration and is expensive, needing to be infused every 14 days. Treprostinil use has been reported to result in clearing of gastrointestinal and central nervous system findings as well as clearing of cutaneous lesions, but reports are limited. Treprostinil may be more effective than other vasodilators because it may also increase the population of circulating endothelial cells, allowing angiogenesis.
There is currently no cure for mastocytosis, but there are a number of medicines to help treat the symptoms:
- Antihistamines block receptors targeted by histamine released from mast cells. Both H and H blockers may be helpful.
- Leukotriene antagonists block receptors targeted by leukotrienes released from mast cells.
- Mast cell stabilizers help prevent mast cells from releasing their chemical contents. Cromoglicic acid is the only medicine specifically approved by the FDA for the treatment of mastocytosis. Ketotifen is available in Canada and Europe, but is only available in the U.S. as eyedrops (Zaditor).
- Proton pump inhibitors help reduce production of gastric acid, which is often increased in patients with mastocytosis. Excess gastric acid can harm the stomach, esophagus, and small intestine.
- Epinephrine constricts blood vessels and opens airways to maintain adequate circulation and ventilation when excessive mast cell degranulation has caused anaphylaxis.
- Salbutamol and other beta-2 agonists open airways that can constrict in the presence of histamine.
- Corticosteroids can be used topically, inhaled, or systemically to reduce inflammation associated with mastocytosis.
Antidepressants are an important and often overlooked tool in the treatment of mastocytosis. Depression and other neurological symptoms have been noted in mastocytosis. Some antidepressants, such as doxepin, are themselves potent antihistamines and can help relieve physical as well as cognitive symptoms.
Calcium channel blockers of the dihydropyridine type are sometimes used to treat high blood pressure. At least one clinical study suggested nifedipine, one of the dihydropyridines, may reduce mast cell degranulation in patients who exhibit "urticaria pigmentosa". A 1984 study by Fairly et al. included a patient with symptomatic "urticaria pigmentosa" who responded to nifedipine. However, nifedipine has not been approved by the FDA for treatment of mastocytosis.
In rare cases in which mastocytosis is cancerous or associated with a blood disorder, the patient may have to use steroids and/or chemotherapy. The agent imatinib (Glivec or Gleevec) has been found to be effective in certain types of mastocytosis.
The laboratory AB Science filed a new drug application for its molecule masitinib at the EMA, as its clinical trials are progressing. In spite of the refusal of the EMA, AB Science decided to restart its clinical trial.
There are clinical trials currently underway testing stem cell transplants as a form of treatment.
Generally, lichen nitidus is asymptomatic and self-limited; therefore, no treatment is required. However, if persistent pruritus is present, or the appearance “...interferes with daily activities or outlook...” topical glucocorticoids may be tried. If the disease process is symptomatic, generalized and extensive, oral glucocorticoids may be indicated. Other reported treatments include PUVA, UVA/UVB phototherapy, astemizole, acitretin, and etretinate.
When appears with sun/humidity; air conditioning (cool dry air) reduces swelling and discomfort.
There is no definitive cure for LS. Behavior change is part of treatment. The patient should minimize or preferably stop scratching LS-affected skin. Any scratching, stress or damage to the skin can worsen the disease. Scratching has been theorized to increase cancer risks. Furthermore the patient should wear comfortable clothes and avoid tight clothing, as it is a major factor in the severity of symptoms in some cases.
Topically applied corticosteroids to the LS-affected skin are the first-line treatment for lichen sclerosus in women and men, with strong evidence showing that they are "safe and effective" when appropriately applied, even over long courses of treatment, rarely causing serious adverse effects. They improve or suppress all symptoms for some time, which highly varies across patients, until it is required to use them again. Methylprednisolone aceponate has been used as a safe and effective corticosteroid for mild and moderate cases. For severe cases, it has been theorized that mometasone furoate might be safer and more effective than clobetasol.
Continuous usage of appropriate doses of topical corticosteroids is required to ensure symptoms stay relieved over the patient's life time. If continuously used, corticosteroids have been suggested to minimize the risk of cancer in various studies. In a prospective longitudinal cohort study of 507 women throughout 6 years, cancer occurred for 4.7% of patients who were only "partially compliant" with corticosteroid treatment, while it occurred in 0% of cases where they were "fully compliant". In a second study, of 129 patients, cancer occurred in 11% of patients, none of which were fully compliant with corticosteroid treatment. Both these studies however also said that a corticosteroid as powerful as clobetasol isn't necessary in most cases. In a prospective study of 83 patients, throughout 20 years, 8 patients developed cancer. 6 already had cancer at presentation and had not had treatment, while the other 2 weren't taking corticosteroids often enough. In all three studies, every single cancer case observed occurred in patients who weren't taking corticosteroids as often as the study recommended.
Continuous, abundant usage of emollients topically applied to the LS-affected skin is recommended to improve symptoms. They can supplement but not replace corticosteroid therapy. They can be used much more frequently than corticosteroids due to the extreme rarity of serious adverse effects. Appropriate lubrication should be used every time before and during sex in genital LS in order to avoid pain and worsening the disease. Some oils such as olive oil and coconut oil can be used to accomplish both the emollient and sexual lubrication function.
Recent studies have shown that topical calcineurin inhibitors such as tacrolimus can have an effect similar to corticosteroids, but its effects on cancer risks in LS are not conclusively known.
In males, it has been reported that circumcision can have positive effects, but does not necessarily prevent against further flares of the disease and does not protect against the possibility of cancer. Circumcision does not prevent or cure LS; in fact, "balanitis xerotica obliterans" in men was first reported as a condition affecting a set of circumcised men, by Stühmer in 1928.
The 5-year survival rate for scleroderma is about 85%, whereas the 10-year survival rate is less than 70%. This varies according to the subtype; for instance, persons with limited skin disease have a 10-year survival rate of 71%, whereas the outlook for patients with systemic scleroderma has generally improved over the years. Ten-year survival rates rose from 54% in 1972 to 66% in 2001 The major causes of death in persons with scleroderma are: pulmonary hypertension, pulmonary fibrosis and scleroderma renal crisis. People with scleroderma are also at a heightened risk for contracting cancers (especially liver, lung, haematologic and bladder cancers) and, perhaps, cardiovascular disease.
Antihistamines are not effective in treating the hives in this condition. It may respond to immunosuppressant drugs such as corticosteroids, cyclooxygenase inhibitors, interferon alpha, interleukin 1 receptor antagonists (Anakinra), perfloxacin, colchicine, cyclosporine or thalidomide. The hives may respond to treatment with PUVA, and the bone pain may respond to bisphosphonates.
Because Schnitzler's syndrome is so rare, the efficacy of different treatments cannot be compared using statistics. Nevertheless, case studies provide evidence that anakinra (otherwise known as kineret) is much more effective for Schnitzler's syndrome than any other drug, and that the improvement in symptoms associated with this treatment is dramatic. For example, Beseda and Nossent (2010) reviewed the literature concerning IL1-RA treatment (i.e. anakinra) for Schnitzler's syndrome. They concluded that, “Twenty-four patients with Schnitzler's syndrome... have been successfully treated with anakinra.” They add that “seven out of seven patients [with Schnitzler’s syndrome], that either interrupted or used anakinra every other day, had relapse of their symptoms within 24-48 h; anakinra was restarted in all patients with the same clinical efficiency.” Kluger et al. (2008) investigated the effectiveness of anakinra for a range of conditions. They searched MEDLINE for English-language trials of anakinra and abstracts from rheumatologial scientific meetings. They conclude that, “Over the last few years it has become increasingly evident that anakinra is highly effective and safe in patients with ... Schnitzler’s syndrome”. The year before, De Koning et al. (2007) reviewed the disease characteristics of Schnitzler syndrome and collected follow-up information to gain insight into long-term prognosis and treatment efficacy. They used data from 94 patients, and their conclusions about treatment for the condition are that, “There have been promising developments in therapeutic options, especially antiinterleukin-1 treatment, which induced complete remission in all 8 patients treated so far.”
Reports of individual patients treated with anakinra illustrate its effectiveness. Beseda and Nossent (ibid.) report treating a longstanding multidrug resistant Schnitzler’s syndrome patient with anakinra: “Within 24 h after the first injection, both the urticaria and the fever disappeared and have not recurred. For the past 6 months, the patient has been in clinical and biochemical remission.” Other authors report “a complete resolution of symptoms” (Dybowski et al., 2008). Crouch et al. (2007) report the effective treatment of a 52-year-old man who had been diagnosed with Schnitzler’s syndrome 8 years earlier: “On review, one week later, the patient’s systemic symptoms had resolved, and his previously elevated white cell count and inflammatory markers had normalised. The use of anakinra in our patient resulted in resolution of symptoms and has enabled cessation of oral prednisolone. Our patient remains symptom free on anakinra after 14 months of follow-up”. Similar stories are reported by Frischmeyer-Guerrerio et al. (2008), Wastiaux et al. (2007), and Eiling et al. (2007), Schneider et al. (2007). De Koning et al. (2006) treated three patients with Schnitzler’s syndrome with thalidomide and anakinra. Thalidomide was only effective for one of the three patients and was discontinued because of polyneuropathy. In contrast, for all three patients, anakinra “led to disappearance of fever and skin lesions within 24 hours. After a follow-up of 16-18 months, all patients are free of symptoms”. The authors concluded that anakinra as a treatment for Schnitzler’s syndrome “is preferable to thalidomide... as it has fewer side effects”.
As well as being more effective, anakinra is safer than the other treatments available for Schnitzler's syndrome. The Cochrane review entitled, ‘Anakinra for rheumatoid arthritis’ (Mertens and Singh, 2009 ) evaluates the (clinical effectiveness and) safety of anakinra in adult patients with rheumatoid arthritis, using data from 2876 patients, from five trials which constituted 781 randomized to placebo and 2065 to anakinra. The authors conclude, “There were no statistically significant differences noted in most safety outcomes with treatment with anakinra versus placebo - including number of withdrawals, deaths, adverse events (total and serious), and infections (total and serious). Injection site reactions were significantly increased, occurring in 1235/1729 (71%) versus 204/729 (28%) of patients treated with anakinra versus placebo, respectively”. These injection site reactions last for no more than four months, and are trivial compared to the very debilitating symptoms of Schnitzler's syndrome.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
Carbon dioxide laser treatment is safe, effective and improves symptoms over a long time, but does not lower cancer risks.
Platelet rich plasma was reported to be effective in one study, producing large improvements in the patients' quality of life, with an average IGA improvement of 2.04 and DLQI improvement of 7.73.
If symptoms are well controlled with moisturizers, steroids may only be required when flares occur. Corticosteroids are effective in controlling and suppressing symptoms in most cases. Once daily use is generally enough. For mild-moderate eczema a weak steroid may be used (e.g., hydrocortisone), while in more severe cases a higher-potency steroid (e.g., clobetasol propionate) may be used. In severe cases, oral or injectable corticosteroids may be used. While these usually bring about rapid improvements, they have greater side effects.
Long term use of topical steroids may result in skin atrophy, stria, telangiectasia. Their use on delicate skin (face or groin) is therefore typically with caution. They are, however, generally well tolerated. Red burning skin, where the skin turns red upon stopping steroid use, has been reported among adults who use topical steroids at least daily for more than a year.
Topical immunosuppressants like pimecrolimus and tacrolimus may be better in the short term and appear equal to steroids after a year of use. Their use is reasonable in those who do not respond to or are not tolerant of steroids. Treatments are typically recommended for short or fixed periods of time rather than indefinitely. Tacrolimus 0.1% has generally proved more effective than pimecrolimus, and equal in effect to mid-potency topical steroids. There is no link to increased risk of cancer from topical use of 1% pimecrolimus cream.
When eczema is severe and does not respond to other forms of treatment, systemic immunosuppressants are sometimes used. Immunosuppressants can cause significant side effects and some require regular blood tests. The most commonly used are ciclosporin, azathioprine, and methotrexate.
As reported by Dispenzieri "et al." Mayo Clinic treatment regimens are tailored to treat the clinical manifestations and prognosis for the rate of progression of the POEMS syndrome in each patient. In rare cases, patients may have minimal or no symptoms at presentation or after successful treatment of their disorder. These patients may be monitored every 2–3 months for symptoms and disease progression. Otherwise, treatment is divided based on the local versus systemic spread of its clonal plasma cells. Patients with one or two plasmacytoma bone lesions and no clonal plasma cells in their bone marrow biopsy specimens are treated by surgical removal or radiotherapy of their tumors. These treatments can relieve many of the syndromes clinical manifestations including neuropathies, have a 10-year overall survival of 70% and a 6-year progression-free survival of 62%. Patients with >2 plasmacytoma bone lesions and/or increases in bone marrow clonal plasma cells are treated with a low-dose or high-dose chemotherapy regimen, i.e. a corticosteroid such as dexamethasone plus an alkylating agents such as melphalan. Dosage regimens are selected on the basis of patient tolerance. Hematological response rates to the dexamethasone/melphalan regimens have been reported to be in the 80% range with neurological response rates approaching 100%. Patients successfully treated with the high-dose dexamethasone/melphalan regimen have been further treated with autologous stem cell transplantation. In 59 patients treated with the chemotherapy/transplantation regimen, the Mayo Clinic reported progression-free survival rates of 98%, 94%, and 75% at 1, 2, and 5 years, respectively.
Other treatment regiments are being studied. Immunomodulatory imide drugs such as thalidomide and lenalidomide have been used in combination with dexamethasone to treat POEMS syndrome patients. While the mechanism of action fo these immunomodulators are not clear, they do inhibit the production of cytokines suspected of contributing to POEMS syndrome such as VEGF, TNFα, and IL-6 and stimulate T cells and NK cells to increase their production of interferon gamma and interleukin 2 (see immunomodulatory imide drug's mechanism of action). A double blind study of 25 POEMS syndrome patients found significantly better results (VEGF reduction, neuromuscular function improvement, quality of life improvement) in patients treated with thalidomide plus dexamethasone compared to patients treated with a thalidomide placebo plus dexamethasone.
Since VEGF plays a central role in the symptoms of POEMS syndrome, some have tried bevacizumab, a monoclonal antibody directed against VEGF. While some reports were positive, others have reported capillary leak syndrome suspected to be the result of overly rapid lowering of VEGF levels. It therefore remains doubtful as to whether this will become part of standard treatment for POEMS syndrome.