Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first approach, which is the best approach at an effective management practice would be to eradicate or severely damage the Mountain and Cherry Leafhopper population because the leafhoppers are the number one vectors for this pathogen. To do this, pesticides (i.e. acephate, bifenthrin, cyfluthrin) could be applied or biological control (predators of the leafhopper) could be used. There should be a pre-season application of control measures as well as a post-season application. This is to maximize the effort at controlling both types of leafhoppers (Cherry and Mountain), thus cutting down the starting inoculum at both stages in the life cycle.
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
There is no known cure for little cherry disease and tolerance breeding programs have not yielded any cultivars able to withstand the effects of the disease for more than a few seasons. Thus, prevention of spread has been the focal point in combating the disease.
There are many strategies to cultural management. Establishment of new trees that are disease free by trying to plant trees as soon as they are received from the nursery to reduce the amount of stress the tree undergoes to reduce the amount of dead tissue. Apply insecticides to prevent insects such as, peach tree borer to prevent disease causing conidia from entering wounded parts of the tree that the insects create. Prune trees appropriately and at the correct time when buds start to break to promote wide angled branching. Infection at pruning sites is less common when done during late spring because of the smaller amount of inoculum present at this time. Inspect trees occasionally and removed any dead branches to prevent infection at these sites. Training trees properly also helps foster decreased amount of disease. Training trees during the first season to have branches develop wide crotch angles to sustain long orchard life. Avoid excessive and late fertilization during cold season to avoid low temperature injury. Fertilize trees during the early spring to prevent cold-susceptible growth.
Control of Leucostoma Canker is possible through a combination of pest and crop management techniques following life cycles of the trees. The strategy is implemented following techniques aimed at reducing number of pathogenic inoculum, minimizing dead or injured tissues to prevent infection, and improving tree health to improve rapid wound healing. Chemical controls have not been very effective at controlling this disease with no fungicides registered specifically for control of "Leucostoma" spp., and demethylation-inhibiting (DMI) fungicides having almost no effect on "L. persoonii".
In pet rabbits, myxomatosis can be misdiagnosed as pasteurellosis, a bacterial infection which can be treated with antibiotics. By contrast, there is no treatment for rabbits suffering from myxomatosis, other than palliative care to ease the suffering of individual animals, and the treatment of secondary and opportunistic infections, in the hopes the treated animal will survive. In practice, the owner is often urged to euthanize the animal to end its suffering.
Little cherry disease or LChD, sometimes referred to as little cherry, K & S little cherry or sour cherry decline, is a viral infectious disease that affects cherry trees, most notably sweet cherries ("Prunus avium") and sour cherries ("Prunus cerasus").
Little cherry disease should not be confused with cherry buckskin disease, which is caused by Phytoplasma.
Note that both diseases are among the diseases referred to as cherry decline.
Manganese deficiency is easy to cure and homeowners have several options when treating these symptoms. The first is to adjust the soil pH. Two materials commonly used for lowering the soil pH are aluminum sulfate and sulfur. Aluminum sulfate will change the soil pH instantly because the aluminum produces the acidity as soon as it dissolves in the soil. Sulfur, however, requires some time for the conversion to sulfuric acid with the aid of soil bacteria. If the soil pH is not a problem and there is no manganese actually in the soil then Foliar feeding for small plants and medicaps for large trees are both common ways for homeowners to get manganese into the plant.
"W. carpophilus" can remain viable for several months and spores are often airborne. Since the fungi thrive in wet conditions, overhead watering should be avoided. Remove and dispose of any infected buds, leaves, fruit and twigs. In fall, fixed copper or Bordeaux mixture can be applied.
Shot hole disease (also called Coryneum blight) is a serious fungal disease that creates BB-sized holes in leaves, rough areas on fruit, and concentric lesions on branches. The pathogen that causes shot hole disease is "Wilsonomyces carpophilus".
Dead arm, sometimes grape canker, is a disease of grapes caused by a deep-seated wood rot of the arms or trunk of the grapevine. As the disease progresses over several years, one or more arms may die, hence the name "dead arm". Eventually the whole vine will die. In the 1970s, dead-arm was identified as really being two diseases, caused by two different fungi, "Eutypa lata" and "Phomopsis viticola" (syn. "Cryptosporella viticola").
Dead arm is a disease that causes symptoms in the common grapevine species, "vitis vinifera", in many regions of the world. This disease is mainly caused by the fungal pathogen, "Phomopsis viticola", and is known to affect many cultivars of table grapes, such as Thompson Seedless, Red Globe, and Flame Seedless. Early in the growing season, the disease can delay the growth of the plant and cause leaves to turn yellow and curl. Small, brown spots on the shoots and leaf veins are very common first symptoms of this disease. Soil moisture and temperature can impact the severity of symptoms, leading to a systemic infection in warm, wet conditions. As the name of this disease suggests, it also causes one or more arms of the grapevine to die, often leading to death of the entire vine.
Lesions of paravaccinia virus will clear up with little to no scaring after 4 to 8 weeks. An antibiotic may be prescribed by a physician to help prevent bacterial infection of the lesion area. In rare cases, surgical removal of the lesions can be done to help increase rate of healing, and help minimize risk of bacterial or fungal infection. Upon healing, no long term side effects have been reported.
There is no consensus on optimal therapeutic approach. The most commonly used drug is diethylcarbamazine (DEC), but it is, however, often ineffective. Although other drugs have been tried such as praziquantel, ivermectin, and albendozole, none has proven to be reliably and rapidly effective. Mebendazole appeared more active than DEC in eliminating the infection, and had comparable overall responses. Thiabendazole evidenced a small, but significant activity against the infection. A combination of treatments, DEC plus mebendazole, was much more effective than single drug doses.
Prevention can be partially achieved through limiting contact with vectors through the use of DEET and other repellents, but due to the predominantly relatively mild symptoms and the infection being generally asymptomatic, little has formally been done to control the disease.
A sizable industry has developed in Japan around services and products that help people deal with hay fever, including protective wear such as coats with smooth surfaces, masks, and glasses; medication and remedies; household goods such as air-conditioner filters and fine window screens; and even "hay fever relief vacations" to low-pollen areas such as Okinawa and Hokkaido. Some people in Japan use medical laser therapy to desensitize the parts of their nose that are sensitive to pollen.
Manganese deficiency can be easy to spot in plants because, much like magnesium deficiency, the leaves start to turn yellow and undergo interveinal chlorosis. The difference between these two is that the younger leaves near the top of the plant show symptoms first because manganese is not mobile while in magnesium deficiency show symptoms in older leaves near the bottom of the plant.
The development of resistance to the disease has taken different courses. In Australia, the virus initially killed rabbits very quickly – about 4 days after infection. This gave little time for the infection to spread. However, a less virulent form of the virus then became prevalent there, which spread more effectively by being less lethal. In Europe, many rabbits are genetically resistant to the original virus that was spread. The survival rate of diseased rabbits has now increased to 35%, while in the 1950s it was near zero.
Hares are not affected by myxomatosis, but can act as vectors.
Diagnosis is not very advanced and is based on the telltale nodding seizures of the victims. When stunted growth and mental disability are also present, probability of nodding syndrome is high. In the future, neurological scans may also be used in diagnosis. As there is no known cure for the disease, treatment has been directed at symptoms, and has included the use of anticonvulsants such as sodium valproate and phenobarbitol. Anti-malaria drugs have also been administered, to unknown effect.
Because the black cherry tree is the preferred host tree for the eastern tent caterpillar, one approach to prevention is to simply remove the trees from the vicinity of horse farms, which was one of the very first recommendations made concerning MRLS. Next, because the brief time for which the full-grown ETCs are on the ground in the vicinity of pregnant mares, simply keeping pregnant mares out of contact with them is also an effective preventative mechanism. In this regard, one Kentucky horse farm took the approach of simply muzzling mares during an ETC exposure period, an approach which was reportedly effective.
No effective treatment for MRLS is apparent. Mares which aborted are treated with broad-spectrum antibiotics to avoid bacterial infections. The foals born from mares infected with MRLS are given supportive care and supplied with medication to reduce inflammatory response and improve blood flow, but none of the treatments appears to be effective, as the majority of the foals do not survive. Unilateral uveitis is treated symptomatically with antibiotics and anti-inflammatory drugs.
These lesions generally do not require treatment. If they are cosmetically unappealing or are subject to bleeding angiomas may be removed by electrocautery, a process of destroying the tissue by use of a small probe with an electric current running through it. Removal may cause scarring. More recently pulsed dye laser or intense pulsed light (IPL) treatment has also been used.
Future treatment based on a locally acting inhibitor of MEK1 and Cyclin E1 could possibly be an option. A natural MEK1 inhibitor is myricetin
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
Currently Sandhoff disease does not have any standard treatment and does not have a cure. However, a person suffering from the disease needs proper nutrition, hydration, and maintenance of clear airways. To reduce some symptoms that may occur with Sandhoff disease, the patient may take anticonvulsants to manage seizures or medications to treat respiratory infections, and consume a precise diet consisting of puree foods due to difficulties swallowing. Infants with the disease usually die by the age of 3 due to respiratory infections. The patient must be under constant surveillance because they can suffer from aspiration or lack the ability to change from the passageway to their lungs versus their stomach and their spit travels to the lungs causing bronchopneumonia. The patient also lacks the ability to cough and therefore must undergo a treatment to shake up their body to remove the mucus from the lining of their lungs. Medication is also given to patients to lessen their symptoms including seizures.
Currently the government is testing several treatments including N-butyl-deoxynojirimycin in mice, as well as stem cell treatment in humans and other medical treatments recruiting test patients.
Hay fever was relatively uncommon in Japan until the early 1960s. Shortly after World War II, reforestation policies resulted in large forests of cryptomeria and Japanese cypress trees, which were an important resource for the construction industry. As these trees matured, they started to produce large amounts of pollen. Peak production of pollen occurs in trees of 30 years and older. As the Japanese economy developed in the 1970s and 1980s, cheaper imported building materials decreased the demand for cryptomeria and Japanese cypress materials. This resulted in increasing forest density and aging trees, further contributing to pollen production and thus, hay fever. In 1970, about 50% of cryptomeria were more than 10 years old, and just 25% were more than 20 years old. By 2000, almost 85% of cryptomeria were over 20 years old, and more than 60% of trees were over 30 years old. This cryptomeria aging trend has continued since then, and though cryptomeria forest acreage has hardly increased since 1980, pollen production has continued to increase. Furthermore, urbanization of land in Japan led to increasing coverage of soft soil and grass land by concrete and asphalt. Pollen settling on such hard surfaces can easily be swept up again by winds to recirculate and contribute to hay fever. As a result, approximately 25 million people (about 20% of the population) currently suffer from this type of seasonal hay fever in Japan.
Treatment is symptomatic, and usually of little value; in most cases, the ulcer heals spontaneously within four to six weeks, sometimes leaving scars. Topical analgesics and anesthetics, as well as topical application of disinfectants/astringents such as potassium permanganate (in sitz baths), is commonly used. In severe cases, a combination of systemic glucocorticoids and broad-spectrum antibiotics has been recommended.